
Administering Platform LSF®
Version 5.0
June 2002

Comments to: doc@platform.com

mailto:doc@platform.com?Subject=LSF%20Documentation%20Feedback%20(Administering%20Platform%20LSF)

Copyright © 1994-2002 Platform Computing Corporation

All rights reserved.

We’d like to hear from
you

You can help us make this manual better by telling us what you think of the content,
organization, and usefulness of the information. If you find an error, or just want to make a
suggestion for improving this manual, please address your comments to doc@platform.com.

Your comments should pertain only to Platform LSF documentation. For product support,
contact support@platform.com.

Although the information in this document has been carefully reviewed, Platform Computing
Corporation (“Platform”) does not warrant it to be free of errors or omissions. Platform
reserves the right to make corrections, updates, revisions or changes to the information in this
document.

UNLESS OTHERWISE EXPRESSLY STATED BY PLATFORM, THE PROGRAM DESCRIBED IN THIS
DOCUMENT IS PROVIDED “AS IS” AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL PLATFORM
COMPUTING BE LIABLE TO ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION ANY LOST PROFITS, DATA, OR
SAVINGS, ARISING OUT OF THE USE OF OR INABILITY TO USE THIS PROGRAM.

Trademarks ® LSF is a registered trademark of Platform Computing Corporation in the United States and
in other jurisdictions.

™ THE BOTTOM LINE IN DISTRIBUTED COMPUTING, PLATFORM COMPUTING, and the PLATFORM
and LSF logos are trademarks of Platform Computing Corporation in the United States and in
other jurisdictions.

UNIX is a registered trademark of The Open Group.

Other products or services mentioned in this document are identified by the trademarks or
service marks of their respective owners.

Last update June 26 2002

mailto:support@platform.com
mailto:doc@platform.com?Subject=LSF%20Documentation%20Feedback

Contents
Welcome . 13

About This Guide . 14

Learning About Platform LSF . 16

Technical Support . 17

1 About Platform LSF . 19

Cluster Concepts . 20

Job Life Cycle . 31

2 How the System Works . 33

Job Submission . 34

Job Scheduling and Dispatch . 37

Host Selection . 39

Job Execution Environment . 41

Fault Tolerance . 43

Part I: Managing Your Cluster

3 Working with Your Cluster . 47

Viewing Cluster Information . 48

Default Directory Structures . 50

Cluster Administrators . 53

Controlling Daemons . 54

Controlling mbatchd . 56

Reconfiguring Your Cluster . 57

4 Working with Hosts . 59

Host States . . 60

Viewing Host Information . . 62

Controlling Hosts . 65

Adding a Host . 66

Removing a Host . 71

Adding Host Types and Host Models to lsf.shared 72

Registering Service Ports . 73
Administering Platform LSF 3

Contents

4

Host Naming . . 75

Hosts with Multiple Addresses . 76

Host Groups . 79

Tuning CPU Factors . 81

5 Working with Queues . 83

Queue States . . 84

Viewing Queue Information . . 85

Controlling Queues . 87

Adding and Removing Queues . 89

Managing Queues . 90

6 Managing Jobs . 91

Job States . 92

Viewing Job Information . . 96

Changing Job Order Within Queues . . 97

Switching Jobs from One Queue to Another 98

Forcing Job Execution . 99

Suspending and Resuming Jobs . 100

Killing Jobs . 101

Sending a Signal to a Job . 102

7 Managing Users and User Groups . . 103

Viewing User and User Group Information 104

About User Groups . 106

Existing User Groups as LSF User Groups 107

LSF User Groups . 108

Part II: Working with Resources

8 Understanding Resources . . 113

About LSF Resources . 114

How Resources are Classified . 116

How LSF Uses Resources . 119

Load Indices . 120

Static Resources . 124

Automatic Detection of Hardware Reconfiguration 125
Administering Platform LSF

Contents
9 Adding Resources . . 127

About Configured Resources . 128

Adding New Resources to Your Cluster . 129

Configuring lsf.shared Resource Section . 130

Configuring lsf.cluster.cluster_name ResourceMap Section 131

Static Shared Resource Reservation . 133

External Load Indices and ELIM . 134

Modifying a Built-In Load Index . 138

Part II I: Scheduling Policies

10 Time Syntax and Configuration . . 143

Specifying Time Values . 144

Specifying Time Windows . 145

Specifying Time Expressions . 146

Automatic Time-based Configuration . 147

11 Deadline Constraint and Exclusive Scheduling 149

Deadline Constraint Scheduling . 150

Exclusive Scheduling . 151

12 Preemptive Scheduling . 153

About Preemptive Scheduling . 154

How Preemptive Scheduling Works . 155

Configuring Preemptive Scheduling . 157

13 Specifying Resource Requirements 159

About Resource Requirements . 160

Queue-Level Resource Requirements . 161

Job-Level Resource Requirements . 163

About Resource Requirement Strings . 164

Selection String . 165

Order String . 167

Usage String . 168

Span String . 170

Same String . 171
Administering Platform LSF 5

Contents

6

14 Fairshare Scheduling . . 173

About Fairshare Scheduling . 174

User Share Assignments . 176

Dynamic User Priority . 178

Using Historical and Committed Run Time 180

How Fairshare Affects Job Dispatch Order 184

Host Partition Fairshare . 185

Queue-Level Fairshare . 187

Cross-queue Fairshare . 188

Hierarchical Fairshare . 192

Users Affected by Multiple Fairshare Policies 195

Ways to Configure Fairshare . 197

Part IV: Job Scheduling and Dispatch

15 Resource Allocation Limits . 203

About Resource Allocation Limits . 204

Configuring Resource Allocation Limits . 207

16 Reserving Resources . . 213

About Resource Reservation . 214

Using Resource Reservation . 215

Memory Reservation for Pending Jobs . 216

Viewing Resource Reservation Information 219

17 Managing Software Licenses with LSF 221

Using Licensed Software with LSF . 222

Host Locked Licenses . 223

Counted Host Locked Licenses . 224

Network Floating Licenses . 225

18 Dispatch and Run Windows . . 229

Dispatch and Run Windows . 230

Run Windows . 231

Dispatch Windows . 232

19 Job Dependencies . 233

Job Dependency Scheduling . 234

Dependency Conditions . 236
Administering Platform LSF

Contents
20 Job Priorities . . 239

User-Assigned Job Priority . 240

Automatic Job Priority Escalation . 242

21 Job Requeue and Job Rerun . . 243

About Job Requeue . 244

Automatic Job Requeue . 245

Reverse Requeue . 246

Exclusive Job Requeue . 247

User-Specified Job Requeue . 248

Automatic Job Rerun . 249

22 Job Checkpoint, Restart, and Migration 251

Checkpointing Jobs . 252

Approaches to Checkpointing . 253

Creating Custom echkpnt and erestart for Application-level Checkpointing . 254

Checkpointing a Job . 257

The Checkpoint Directory . 258

Making Jobs Checkpointable . 259

Manually Checkpointing Jobs . 260

Enabling Periodic Checkpointing . 261

Automatically Checkpointing Jobs . 262

Restarting Checkpointed Jobs . 263

Migrating Jobs . 264

23 Chunk Job Dispatch . 267

About Job Chunking . 268

Configuring a Chunk Job Dispatch . 269

Submitting and Controlling Chunk Jobs . 271

24 Job Arrays . 275

Creating a Job Array . 276

Handling Input and Output Files . 278

Redirecting Standard Input and Output . 279

Passing Arguments on the Command Line 280

Job Array Dependencies . 281

Monitoring Job Arrays . 282

Controlling Job Arrays . 284

Requeuing a Job Array . 285

Job Array Job Slot Limit . 286
Administering Platform LSF 7

Contents

8

Part V: Controlling Job Execution

25 Runtime Resource Usage Limits . . 291

About Resource Usage Limits . 292

Specifying Resource Usage Limits . 294

Supported Resource Usage Limits and Syntax 297

CPU Time and Run Time Normalization . 302

26 Load Thresholds . . 303

Automatic Job Suspension . 304

Suspending Conditions . 306

27 Pre-Execution and Post-Execution Commands 309

About Pre-Execution and Post-Execution Commands 310

Configuring Pre- and Post-Execution Commands 312

28 Job Starters . . 315

About Job Starters . 316

Command-Level Job Starters . 318

Queue-Level Job Starters . 320

Controlling Execution Environment Using Job Starters 322

29 External Job Submission and Execution Controls 325

Understanding External Executables . 326

Using esub . 327

Working with eexec . 332

30 Configuring Job Controls . 333

Default Job Control Actions . 334

Configuring Job Control Actions . 336

Customizing Cross-Platform Signal Conversion 339

Part VI: Interactive Jobs

31 Interactive Jobs with bsub . . 343

About Interactive Jobs . 344

Submitting Interactive Jobs . 345

Performance Tuning for Interactive Batch Jobs 348

Interactive Batch Job Messaging . 351

Running X Applications with bsub . 353

Writing Job Scripts . 354

Registering utmp File Entries for Interactive Batch Jobs 357
Administering Platform LSF

Contents
32 Running Interactive and Remote Tasks 359

Running Remote Tasks . 360

Interactive Tasks . 363

Load Sharing Interactive Sessions . 366

Load Sharing X Applications . 367

Part VII: Running Parallel Jobs

33 Running Parallel Jobs . 373

How LSF Runs Parallel Jobs . 374

Preparing Your Environment to Submit Parallel Jobs to LSF 375

Submitting Parallel Jobs . 376

Submitting PVM Jobs to LSF . 377

Submitting MPI Jobs . 378

Starting Parallel Tasks with LSF Utilities . 380

Job Slot Limits For Parallel Jobs . 381

Specifying a Minimum and Maximum Number of Processors 382

Specifying a Mandatory First Execution Host 383

Controlling Processor Allocation Across Hosts 385

Running Parallel Processes on Homogeneous Hosts 387

Using LSF Make to Run Parallel Jobs . 389

Limiting the Number of Processors Allocated 390

Reserving Processors . 393

Reserving Memory for Pending Parallel Jobs 395

Allowing Jobs to Use Reserved Job Slots . 396

Parallel Fairshare . 401

How Deadline Constraint Scheduling Works For Parallel Jobs 402

34 Advance Reservation . 403

About Advance Reservation . 404

Configuring Advance Reservation . 405

Using Advance Reservation . 406
Administering Platform LSF 9

Contents

10
Part VIII: Monitoring Your Cluster

35 Event Generation . . 417

Event Generation . 418

36 Tuning the Cluster . . 421

Tuning LIM . 422

Adjusting LIM Parameters . 423

Load Thresholds . 424

Changing Default LIM Behavior to Improve Performance 428

Tuning mbatchd on UNIX . 432

37 Authentication . . 435

About User Authentication . 436

About Host Authentication . 442

About Daemon Authentication . 443

LSF in Multiple Authentication Environments 444

User Account Mapping . 445

38 Job Email, and Job File Spooling . . 447

Mail Notification When a Job Starts . 448

File Spooling for Job Input, Output, and Command Files 451

39 Non-Shared File Systems . 455

About Directories and Files . 456

Using LSF with Non-Shared File Systems . 457

Remote File Access . 458

File Transfer Mechanism (lsrcp) . 460

40 Error and Event Logging . . 461

System Directories and Log Files . 462

Managing Error Logs . 464

System Event Log . 465

Duplicate Logging of Event Logs . 466

41 Troubleshooting and Error Messages 469

Shared File Access . 470

Common LSF Problems . 471

Error Messages . 476

Setting Daemon Message Log to Debug Level 483

Setting Daemon Timing Levels . 485
Administering Platform LSF

Contents
Part IX: LSF Utilities

42 Using lstcsh . 489

About lstcsh . 490

Task Lists . 491

Local and Remote Modes . 492

Automatic Remote Execution . 493

Differences from Other Shells . 494

Limitations . 495

Starting lstcsh . 496

Using lstcsh as Your Login Shell . 497

Host Redirection . 498

Task Control . 499

Built-in Commands . 500

Writing Shell Scripts in lstcsh . 502

Index . . 503
Administering Platform LSF 11

Contents

12
 Administering Platform LSF

Welcome
Contents ◆ “About This Guide” on page 14

◆ “Learning About Platform LSF” on page 16

◆ “Technical Support” on page 17
Administering Platform LSF 13

About This Guide

14
About This Guide

Purpose of this guide
This guide describes how to manage and configure the Platform LSF® software
(“LSF”). In it, you will find information to do the following:

◆ Configure and maintain your cluster

◆ Configure and manage queues, hosts, and users

◆ Run jobs and control job execution

◆ Understand and work with resources

◆ Understand and configure scheduling policies and

◆ Manage job scheduling and dispatch

Who should use this guide
This guide is intended for Platform LSF cluster administrators who need to
implement business policies in LSF. LSF users who want more in-depth
understanding of advanced details of Platform LSF operation should also read
this guide. LSF users who simply want to run and monitor their jobs should
read Running Jobs with Platform LSF.

This guide assumes that you have access to one or more Platform LSF products
at your site.

What you should already know
This guide assumes:

◆ You have knowledge of system administration tasks such as creating user
accounts, sharing and mounting Network File System (NFS) partitions, and
backing up the system

◆ You are familiar with basic LSF concepts and basic LSF operations
Administering Platform LSF

Welcome
Typographical conventions

Command notation

Typeface Meaning Example

Courier The names of on-screen computer output, commands, files,
and directories

The lsid command

Bold Courier What you type, exactly as shown Type cd /bin

Italics ◆ Book titles, new words or terms, or words to be
emphasized

◆ Command-line place holders—replace with a real name
or value

The queue specified
by queue_name

Bold Sans Serif ◆ Names of GUI elements that you manipulate Click OK

Notation Meaning Example

Quotes " or ' Must be entered exactly as shown "job_ID[index_list]"

Commas , Must be entered exactly as shown -C time0,time1

Ellipsis … The argument before the ellipsis can be
repeated. Do not enter the ellipsis.

job_ID ...

lower case italics The argument must be replaced with a real
value you provide.

job_ID

OR bar | You must enter one of the items separated
by the bar. You cannot enter more than one
item, Do not enter the bar.

[-h | -V]

Parenthesis () Must be entered exactly as shown -X "exception_cond([params])::action]
...

Option or variable in
square brackets []

The argument within the brackets is
optional. Do not enter the brackets.

lsid [-h]

Shell prompts ◆ C shell: %
◆ Bourne shell and Korn shell: $
◆ root account: #
Unless otherwise noted, the C shell prompt
is used in all command examples

% cd /bin
Administering Platform LSF 15

Learning About Platform LSF

16
Learning About Platform LSF

World Wide Web and FTP
The latest information about all supported releases of LSF is available on the
Platform Computing site on the World Wide Web at www.platform.com. Look
in the Online Support area for current README files, Release Notes, Upgrade
Notices, Frequently Asked Questions (FAQs), Troubleshooting, and other
helpful information.

The Platform FTP site (ftp.platform.com) also provides current README,
Release Notes, and upgrade information for all supported releases of LSF.

If you have problems accessing the Platform web site or the Platform FTP site,
send email to support@platform.com.

Platform LSF manuals
All of the LSF manuals are available in HTML and PDF format on the Platform
Web site at www.platform.com/lsf_docs.

README files and release notes and UPGRADE
Before installing LSF, be sure to read the files named readme.html and
release_notes.html. To upgrade from LSF 4.x to Version 5.0, follow the
steps in upgrade.html.

You can also view these files from the Download area of the Platform Online
Support Web page.

Online documentation
The following information is available online:

◆ LSF manuals in HTML and PDF format, available on the LSF product CD,
and the Platform Web site at www.platform.com/lsf_docs

◆ Man pages (accessed with the man command) for all LSF commands and
configuration files
Administering Platform LSF

http://www.platform.com/
mailto:support@platform.com
http://www.platform.com/lsf_docs
http://www.platform.com/lsf_docs

Welcome
Technical Support
Contact Platform Computing or your LSF vendor for technical support.

Email support@platform.com

World Wide Web www.platform.com

Phone ◆ North America: +1 905 948 4297

◆ Europe: +44 1256 370 530

◆ Asia: +86 10 6238 1125

Toll-free phone 1-877-444-4LSF (+1 877 444 4573)

Mail Platform Support
Platform Computing Corporation
3760 14th Avenue
Markham, Ontario
Canada L3R 3T7

When contacting Platform, please include the full name of your company.

We’d like to hear from you
If you find an error in any Platform documentation, or you have a suggestion
for improving it, please let us know:

Email doc@platform.com

Mail Information Development
Platform Computing Corporation
3760 14th Avenue
Markham, Ontario
Canada L3R 3T7

Be sure to tell us:

◆ The title of the manual you are commenting on

◆ The version of the product you are using

◆ The format of the manual (HTML or PDF)
Administering Platform LSF 17

mailto:support@platform.com
http://www.platform.com
mailto:doc@platform.com?Subject=LSF%20Documentation%20Feedback

Technical Support

18
 Administering Platform LSF

C H A P T E R

1
About Platform LSF

Contents ◆ “Cluster Concepts” on page 20

◆ “Job Life Cycle” on page 31
Administering Platform LSF 19

Cluster Concepts

20
Cluster Concepts

Clusters, jobs, and queues

Cluster A group of computers (hosts) running LSF that work together as a single unit,
combining computing power and sharing workload and resources. A cluster
provides a single-system image for disparate computing resources.

Hosts can be grouped into clusters in a number of ways. A cluster could
contain:

◆ All the hosts in a single administrative group

◆ All the hosts on one file server or sub-network

◆ Hosts that perform similar functions

Commands
◆ bhosts—View hosts in the cluster

◆ lsid—View the cluster name

◆ lsclusters—View cluster status and size

Configuration
◆ Define hosts in your cluster in lsf.cluster.cluster_name

Job A unit of work run in the LSF system. A job is a command submitted to LSF for
execution. LSF schedules, controls, and tracks the job according to configured
policies.

Jobs can be complex problems, simulation scenarios, extensive calculations,
anything that needs compute power.

lim

sbatchd
Commands

respim

Execution Host
Server Host lim

sbatchd
Commands

respim

Execution Host
Server Host

lim

sbatchd
Commands

respim

Execution Host
Server Host

lim

sbatchd
Commands

respim

Submission Host
Server Host

Commands

Submission Host
Client Host

Master lim

mbschd
sbatchd

Commands

respim

mbatchdQueues

Master Host
Server Host
Administering Platform LSF

Chapter 1
About Platform LSF
Commands
◆ bjobs—View jobs in the system

◆ bsub—Submit jobs

Job slot A job slot is a bucket into which a single unit of work is assigned in the LSF
system. Hosts are configured to have a number of job slots available and
queues dispatch jobs to fill job slots.

Commands
◆ bhosts—View job slot limits for hosts and host groups

◆ bqueues—View job slot limits for queues

◆ busers—View job slot limits for users and user groups

Configuration
◆ Define job slot limits in lsb.resources.

Job states LSF jobs have the following states:

◆ PEND—Waiting in a queue for scheduling and dispatch

◆ RUN—Dispatched to a host and running

◆ DONE—Finished normally with zero exit value

◆ EXITED—Finished with non-zero exit value

◆ PSUSP—Suspended while pending

◆ USUSP—Suspended by user

◆ SSUSP—Suspended by the LSF system

◆ POST_DONE—Post-processing completed without errors

◆ POST_ERR—Post-processing completed with errors

◆ WAIT—Members of a chunk job that are waiting to run

Queue A clusterwide container for jobs. All jobs wait in queues until they are
scheduled and dispatched to hosts.

Queues do not correspond to individual hosts; each queue can use all server
hosts in the cluster, or a configured subset of the server hosts.

When you submit a job to a queue, you do not need to specify a host. LSF
dispatches the job to the best host in the cluster to run that job.

Queues implement different job scheduling and control policies.

Commands
◆ bqueues—View available queues

◆ bsub -q—Submit a job to a specific queue

◆ bparams—View default queues

Configuration
◆ Define queues in lsb.queues

First-come, first-served (FCFS) scheduling
The default type of scheduling in LSF. Jobs are considered for dispatch based
on their order in the queue.
Administering Platform LSF 21

Cluster Concepts

22
Hosts

Host An individual computer in the cluster.

Each host may have more than 1 processor. Multiprocessor hosts are used to
run parallel jobs. A multiprocessor host with a single process queue is
considered a single machine, while a box full of processors that each have their
own process queue is treated as a group of separate machines.

Commands
◆ bhosts—View all hosts in the cluster

◆ lsload—View load on hosts

◆ lshosts—View configuration information about hosts in the cluster
including number of CPUS, model, type, and whether the host is a client
or server

Submission host The host where jobs are submitted to the cluster.

Jobs are submitted using the bsub command or directly from an integrated
application.

Client hosts and server hosts can act as submission hosts.

Commands
◆ bsub—Submit a job

◆ bjobs—View jobs that are submitted

Execution host The host where a job runs. Can be the same as the submission host. All
execution hosts are server hosts.

Commands
◆ bjobs—View where a job runs

Server host Hosts that are capable of executing jobs. A server host runs sbatchd to execute
server requests and apply local policies. A server host always acts as an
execution host but it can also act as a submission host.

Commands
◆ lshosts—View hosts that are servers (server=Yes)

Configuration
◆ Server hosts are defined in the lsf.cluster.cluster_name file by

setting the value of server to 1

Client host Hosts that are capable of submitting jobs to the cluster. Client hosts run LSF
commands and act only as submission hosts. Client hosts do not execute jobs
or run LSF daemons.

Commands
◆ lshosts—View hosts that are clients (server=No)
Administering Platform LSF

Chapter 1
About Platform LSF
Configuration
◆ Client hosts are defined in the lsf.cluster.cluster_name file by setting

the value of server to 0

Master host Where the master LIM and mbatchd run. An LSF server host that acts as the
overall coordinator for that cluster. Each cluster has one master host to do all
job scheduling and dispatch. If the master host goes down, another LSF server
in the cluster becomes the master host.

All LSF daemons run on the master host. The LIM on the master host is the
master LIM.

Commands
◆ lsid—View the master host name

Configuration
◆ The master host is the first host listed in the lsf.cluster.cluster_name

file or is defined along with other candidate master hosts by
LSF_MASTER_LIST in lsf.conf.

LSF daemons

mbatchd Master Batch Daemon running on the master host. Started by sbatchd.
Responsible for the overall state of jobs in the system.

Receives job submission, and information query requests. Manages jobs held
in queues. Dispatches jobs to hosts as determined by mbschd.

Configuration
◆ Port number defined in lsf.conf.

mbschd Master Batch Sheduler Daemon running on the master host. Works with
mbatchd. Started by mbatchd.

Makes scheduling decisions based on job requirements and policies.

sbatchd Slave Batch Daemon running on each server host. Receives the request to run
the job from mbatchd and manages local execution of the job. Responsible for
enforcing local policies and maintaining the state of jobs on the host.

sbatchd forks a child sbatchd for every job. The child sbatchd uses res to run
the job. The child sbatchd exits when the job is complete.

mbatchd

mbschd

lim

pim

job requests and dispatch

job scheduling

job execution

job process information

host information

res

sbatchd
Administering Platform LSF 23

Cluster Concepts

24
Commands
◆ badmin hstartup—Starts sbatchd

◆ badmin hshutdown—Shuts down sbatchd

◆ badmin hrestart—Restarts sbatchd

Configuration
◆ Port number defined in lsf.conf

res Remote Execution Server running on each server host. Accepts remote
execution requests to provide, transparent and secure remote execution of jobs
and tasks.

Commands
◆ lsadmin resstartup—Starts res

◆ lsadmin resshutdown—Shuts down res

◆ lsadmin resrestart—Restarts res

Configuration
◆ Port number defined in lsf.conf

lim Load Information Manager running on each server host. Collects host load and
configuration information and forwards it to the master LIM running on the
master host. Reports the information displayed by lsload and lshosts.

Static indices are reported when the LIM starts up or when the indices change:

◆ Number of CPUs (ncpus)

◆ Number of disks (ndisks)

◆ Total available memory (maxmem)

◆ Total available swap (maxswp)

◆ Total available temp (maxtmp)

Dynamic indices for host load collected at regular intervals are:

◆ Hosts status (status)

◆ 15 second, 1 minute, and 15 minute run queue lengths (r15s, r1m, and
r15m)

◆ CPU utilization (ut)

◆ Paging rate (pg)

◆ Number of login sessions (ls)

◆ Interactive idle time (it)

◆ Available swap space (swp)

◆ Available memory (mem)

◆ Available temp space (tmp)

◆ Disk IO rate (io)

Commands
◆ lsadmin limstartup—Starts lim

◆ lsadmin limshutdown—Shuts down lim

◆ lsadmin limrestart—Restarts lim
Administering Platform LSF

Chapter 1
About Platform LSF
◆ lsload—View dynamic load values

◆ lshosts—View static host load values

Configuration
◆ Port number defined in lsf.conf.

Master LIM The LIM running on the master host. Receives load information from the LIMs
running on hosts in the cluster.

Forwards load information to mbatchd. mbatchd forwards this information to
mbschd to support scheduling decisions. If the master LIM becomes
unavailable, a LIM on another host automatically takes over.

Commands
◆ lsadmin limstartup—Starts lim

◆ lsadmin limshutdown—Shuts down lim

◆ lsadmin limrestart—Restarts lim

◆ lsload—View dynamic load values

◆ lshosts—View static host load values

Configuration
◆ Port number defined in lsf.conf.

ELIM External LIM (ELIM) is a site-definable executable that collects and tracks
custom load indicies. An ELIM can be a shell script or a compiled binary
program, which returns the values of the shared resources you define. The
ELIM executable must be named elim and located in LSF_SERVERDIR.

pim Process Information Manager running on each server host. Started by LIM
when it is started. LIM periodically checks on pim and restarts it if it dies.

Collects information about job processes running on the host such as CPU and
memory used by the job and reports the information to sbatchd.

Commands
◆ bjobs—View job information

Batch jobs and tasks
You can either run jobs through the batch system where jobs are held in
queues, or you can interactively run tasks without going through the batch
system, such as tests for example.

Job A unit of work run in the LSF system. A job is a command submitted to LSF for
execution. LSF schedules, controls, and tracks the job according to configured
policies.

Jobs can be complex problems, simulation scenarios, extensive calculations,
anything that needs compute power.
Administering Platform LSF 25

Cluster Concepts

26
Commands
◆ bjobs—View jobs in the system

◆ bsub—Submit jobs

Interactive batch
job

A batch job that allows you to interact with the application and still take
advantage of LSF scheduling policies and fault tolerance. All input and output
are through the terminal that you used to type the job submission command.

When you submit an interactive job, a message is displayed while the job is
awaiting scheduling. A new job cannot be submitted until the interactive job is
completed or terminated.

The bsub command stops display of output from the shell until the job
completes, and no mail is sent to you by default. Use Ctrl-C at any time to
terminate the job.

Commands
◆ bsub -I—Submit an interactive job

Interactive task A command that is not submitted to a batch queue and scheduled by LSF, but
is dispatched immediately. LSF locates the resources needed by the task and
chooses the best host among the candidate hosts that has the required
resources and is lightly loaded. Each command can be a single process, or it
can be a group of cooperating processes.

Tasks are run without using the batch processing features of LSF but still with
the advantage of resource requirements and selection of the best host to run
the job based on load.

Commands
◆ lsrun—Submit an interactive task

◆ lsgrun—Submit an interactive task to a group of hosts

◆ See also LSF utilities such as ch, lsacct, lsacctmrg, lslogin, lsplace,
lsload, lsloadadj, lseligible, lsmon, lstcsh

Local task An application or command that does not make sense to run remotely. For
example, the ls command on UNIX.

Commands
◆ lsltasks—View and add tasks

Configuration
◆ lsf.task—Configure systemwide resource requirements for tasks

◆ lsf.task.cluster—Configure clusterwide resource requirements for
tasks

◆ .lsftasks—Configure user-specific tasks

Remote task An application or command that can be run on another machine in the cluster.

Commands
◆ lsrtasks—View and add tasks
Administering Platform LSF

Chapter 1
About Platform LSF
Configuration
◆ lsf.task—Configure systemwide resource requirements for tasks

◆ lsf.task.cluster—Configure clusterwide resource requirements for
tasks

◆ .lsftasks—Configure user-specific tasks

Host types and host models
Hosts in LSF are characterized by host type and host model.

The following example has HP hosts. The host type is HPPA. Host models can
be HPN4000, HPJ210, etc.

Host type The combination of operating system version and host CPU architecture.

All computers that run the same operating system on the same computer
architecture are of the same type—in other words, binary-compatible with
each other.

Each host type usually requires a different set of LSF binary files.

Commands
◆ lsinfo -t—View all host types defined in lsf.shared

Configuration
◆ Defined in lsf.shared

◆ Mapped to hosts in lsf.cluster.cluster_name

Host model The combination of host type and CPU speed (CPU factor) of the computer.

All hosts of the same relative speed are assigned the same host model.

The CPU factor is taken into consideration when jobs are being dispatched.

Commands
◆ lsinfo -m—View a list of currently running models

◆ lsinfo -M—View all models defined in lsf.shared

Configuration
◆ Defined in lsf.shared

◆ Mapped to hosts in lsf.cluster.cluster_name

Host models

Host type HPPA

HPJ210HPN4000 HPC3000HPC200
Administering Platform LSF 27

Cluster Concepts

28
Users and administrators

LSF user A user account that has permission to submit jobs to the LSF cluster.

LSF administrator In general, you must be an LSF administrator to perform operations that will
affect other LSF users. Each cluster has one primary LSF administrator, specified
during LSF installation. You can also configure additional administrators at the
cluster level and at the queue level.

Primary LSF
administrator

The first cluster administrator specified during installation and first
administrator listed in lsf.cluster.cluster_name. The primary LSF
administrator account owns the configuration and log files. The primary LSF
administrator has permission to perform clusterwide operations, change
configuration files, reconfigure the cluster, and control jobs submitted by all
users.

Cluster
administrator

May be specified during LSF installation or configured after installation. Cluster
administrators can perform administrative operations on all jobs and queues in
the cluster. Cluster administrators have the same cluster-wide operational
privileges as the primary LSF administrator except that they do not necessarily
have permission to change LSF configuration files.

For example, a cluster administrator can create an LSF host group, submit a job
to any queue, or terminate another user’s job.

Queue
administrator

An LSF administrator user account that has administrative permissions limited
to a specified queue. For example, an LSF queue administrator can perform
administrative operations on the specified queue, or on jobs running in the
specified queue, but cannot change LSF configuration or operate on LSF
daemons.

Resources

Resource usage The LSF system uses built-in and configured resources to track job resource
requirements and schedule jobs according to the resources available on
individual hosts.

Jobs submitted through the LSF system will have the resources they use
monitored while they are running. This information is used to enforce resource
limits and load thresholds as well as fairshare scheduling.

LSF collects information such as:

◆ Total CPU time consumed by all processes in the job

◆ Total resident memory usage in KB of all currently running processes in a
job

◆ Total virtual memory usage in KB of all currently running processes in a job
Administering Platform LSF

Chapter 1
About Platform LSF
◆ Currently active process group ID in a job

◆ Currently active processes in a job

On UNIX, job-level resource usage is collected through PIM.

Commands
◆ lsinfo—View the resources available in your cluster

◆ bjobs -l—View current resource usage of a job

Configuration
◆ SBD_SLEEP_TIME in lsb.params—Configures how often resource usage

information is sampled by PIM, collected by sbatchd, and sent to mbatchd

Load indices Load indices measure the availability of dynamic, non-shared resources on
hosts in the cluster. Load indices built into the LIM are updated at fixed time
intervals.

Commands
◆ lsload -l—View all load indices

◆ bhosts -l—View load levels on a host

External load
indices

Defined and configured by the LSF administrator and collected by an External
Load Information Manager (ELIM) program. The ELIM also updates LIM when
new values are received.

Commands
◆ lsinfo—View external load indices

Static resources Built-in resources that represent host information that does not change over
time, such as the maximum RAM available to user processes or the number of
processors in a machine. Most static resources are determined by the LIM at
start-up time.

Static resources can be used to select appropriate hosts for particular jobs
based on binary architecture, relative CPU speed, and system configuration.

Load thresholds Two types of load thresholds can be configured by your LSF administrator to
schedule jobs in queues. Each load threshold specifies a load index value:

◆ loadSched determines the load condition for dispatching pending jobs. If
a host’s load is beyond any defined loadSched, a job will not be started
on the host. This threshold is also used as the condition for resuming
suspended jobs.

◆ loadStop determines when running jobs should be suspended.

To schedule a job on a host, the load levels on that host must satisfy both the
thresholds configured for that host and the thresholds for the queue from
which the job is being dispatched.

The value of a load index may either increase or decrease with load,
depending on the meaning of the specific load index. Therefore, when
comparing the host load conditions with the threshold values, you need to use
either greater than (>) or less than (<), depending on the load index.
Administering Platform LSF 29

Cluster Concepts

30
Commands
◆ bhosts-l—View suspending conditions for hosts

◆ bqueues -l—View suspending conditions for queues

◆ bjobs -l—View suspending conditions for a particular job and the
scheduling thresholds that control when a job is resumed

Configuration
◆ lsb.bhosts—Configure thresholds for hosts

◆ lsb.queues—Configure thresholds for queues

Runtime resource
usage limits

Limit the use of resources while a job is running. Jobs that consume more than
the specified amount of a resource are signalled or have their priority lowered.

Configuration
◆ lsb.queues—Configure resource usage limits for queues

Hard and soft
limits

Resource limits specified at the queue level are hard limits while those
specified with job submission are soft limits. See setrlimit(2) man page for
concepts of hard and soft limits.

Resource
allocation limits

Restrict the amount of a given resource that must be available during job
scheduling for different classes of jobs to start, and which resource consumers
the limits apply to. If all of the resource has been consumed, no more jobs can
be started until some of the resource is released.

Configuration
◆ lsb.resources—Configure queue-level resource allocation limits for

hosts, users, queues, and projects

Resource
requirements

(bsub -R)

Restrict which hosts the job can run on. Hosts that match the resource
requirements are the candidate hosts. When LSF schedules a job, it collects the
load index values of all the candidate hosts and compares them to the
scheduling conditions. Jobs are only dispatched to a host if all load values are
within the scheduling thresholds.

Comands
◆ bsub-R—Specify resource requirement string for a job

Configuration
◆ lsb.queues—Configure resource requirements for queues
Administering Platform LSF

Chapter 1
About Platform LSF
Job Life Cycle

1 Submit a job
You submit a job from an LSF client or server with the bsub command.

If you do not specify a queue when submitting the job, the job is submitted to
the default queue.

Jobs are held in a queue waiting to be scheduled and have the PEND state.
The job is held in a job file in the
LSF_SHAREDIR/cluster_name/logdir/info/ directory.

Job ID LSF assigns each job a unique job ID when you submit the job.

Job name You can also assign a name to the job with the -J option of bsub. Unlike the
job ID, the job name is not necessarily unique.

2 Schedule job
1 mbatchd looks at jobs in the queue and sends the jobs for scheduling to

mbschd at a preset time interval (defined by the parameter
JOB_SCHEDULING_INTERVAL in lsf.params).

2 mbschd evaluates jobs and makes scheduling decisions based on:

❖ Job priority

❖ Scheduling policies

❖ Available resources

3 mbschd selects the best hosts where the job can run and sends its decisions
back to mbatchd.

Resource information is collected at preset time intervals by the master LIM
from LIMs on server hosts. The master LIM communicates this information to
mbatchd, which in turn communicates it to mbschd to support scheduling
decisions.

Submission Host

Master lim

mbschd
sbatchd

Commands

respim

mbatchdQueues

Master Host
Server Host

1 2

3
5

Submit job (bsub) dispatch job

lim

sbatchd

Commands

respim

Execution Host
Server Host

job report (output, errors, info)

Job
PEND Job RUN

2

4

6 email job report
Administering Platform LSF 31

Job Life Cycle

32
3 Dispatch job
As soon as mbatchd receives scheduling decisions, it immediately dispatches
the jobs to hosts.

4 Run job
sbatchd handles job execution. It:

1 Receives the request from mbatchd

2 Creates a child sbatchd for the job

3 Creates the execution environment

4 Starts the job using res

The execution environment is copied from the submission host to the
execution host and includes the following:

◆ Environment variables needed by the job

◆ Working directory where the job begins running

◆ Other system-dependent environment settings, for example:

❖ On UNIX, resource limits and umask

❖ On Windows, desktop and Windows root directory

The job runs under the user account that submitted the job and has the status
RUN.

5 Return output
When a job is completed, it is assigned the DONE status if the job was
completed without any problems. The job is assigned the EXIT status if errors
prevented the job from completing.

sbatchd communicates job information including errors and output to
mbatchd.

6 Send email to client
mbatchd returns the job output, job error, and job information to the client
through email. Use the -o and -e options of bsub to send job output to a file.

Job report A job report is sent by email to the LSF client and includes:

◆ Job information such as:

❖ CPU use

❖ Memory use

❖ Name of the account that submitted the job

◆ Job output

◆ Errors
Administering Platform LSF

C H A P T E R

2
How the System Works

LSF can be configured in different ways that affect the scheduling of jobs. By
default, this is how LSF handles a new job:

1 Receive the job. Create a job file. Return the job ID to the user.

2 Schedule the job and select the best available host.

3 Dispatch the job to a selected host.

4 Set the environment on the host.

5 Start the job.

Contents ◆ “Job Submission” on page 34

◆ “Job Scheduling and Dispatch” on page 37

◆ “Host Selection” on page 39

◆ “Job Execution Environment” on page 41

◆ “Fault Tolerance” on page 43
Administering Platform LSF 33

Job Submission

34
Job Submission
The life cycle of a job starts when you submit the job to LSF. On the command
line, bsub is used to submit jobs, and you can specify many options to bsub
to modify the default behaviour. Jobs must be submitted to a queue.

Queues
Queues represent a set of pending jobs, lined up in a defined order and waiting
for their opportunity to use resources. Queues implement different job
scheduling and control policies. All jobs submitted to the same queue share
the same scheduling and control policy. Queues do not correspond to
individual hosts; each queue can use all server hosts in the cluster, or a
configured subset of the server hosts.

A queue is a network-wide holding place for jobs. Jobs enter the queue via the
bsub command. LSF can be configured to have one or more default queues.
Jobs that are not submitted to a specific queue will be assigned to the first
default queue that accepts them. Queues have the following attributes
associated with them:

◆ Priority, where a larger integer is a higher priority

◆ Name, which uniquely identifies the queue

◆ Queue limits, that restrict hosts, number of jobs, users, groups, processors,
etc.

◆ Standard UNIX limits: memory, swap, process, CPU, etc.

◆ Scheduling policies: FCFS, fairshare, preemptive, exclusive

◆ Administrators

◆ Run conditions

◆ Load-sharing threshold conditions, which apply load sharing to the queue

◆ UNIX nice(1) value, which sets the UNIX scheduler priority

Example queue:

Begin Queue
QUEUE_NAME = normal
PRIORITY = 30
STACKLIMIT= 2048
DESCRIPTION = For normal low priority jobs, running only if hosts are
lightly loaded.
QJOB_LIMIT = 60 # job limit of the queue
PJOB_LIMIT = 2 # job limit per processor
ut = 0.2
io = 50/240
#CPULIMIT = 180/hostA # 3 hours of hostA
USERS = all
HOSTS = all
NICE = 20
End Queue
Administering Platform LSF

Chapter 2
How the System Works
queue priority Defines the order in which queues are searched to determine which job will
be processed. Queues are assigned a priority by the LSF administrator, where
a higher number has a higher priority. Queues are serviced by LSF in order of
priority from the highest to the lowest.

Automatic queue selection
Typically, a cluster has multiple queues. When you submit a job to LSF you
might define which queue the job will enter. If you submit a job without
specifying a queue name, LSF considers the requirements of the job and
automatically chooses a suitable queue from a list of candidate default queues.
If you did not define any candidate default queues, LSF will create a new
queue using all the default settings, and submit the job to that queue.

Viewing default
queues

Use bparams to display default queues:

% bparams
Default Queues: normal
...

The user can override this list by defining the environment variable
LSB_DEFAULTQUEUE.

How automatic
queue selection

works

LSF selects a suitable queue according to:

◆ User access restriction—Queues that do not allow this user to submit jobs
are not considered.

◆ Host restriction—If the job explicitly specifies a list of hosts on which the
job can be run, then the selected queue must be configured to send jobs
to all hosts in the list.

◆ Queue status—Closed queues are not considered.

◆ Exclusive execution restriction—If the job requires exclusive execution,
then queues that are not configured to accept exclusive jobs are not
considered.

◆ Job’s requested resources—These must be within the resource allocation
limits of the selected queue.

If multiple queues satisfy the above requirements, then the first queue listed in
the candidate queues (as defined by the DEFAULT_QUEUE parameter or the
LSB_DEFAULTQUEUE environment variable) that satisfies the requirements is
selected.
Administering Platform LSF 35

Job Submission

36
Job files
When a batch job is submitted to a queue, LSF Batch holds it in a job file until
conditions are right for it to be executed. Then the job file is used to execute
the job.

UNIX The job file is a Bourne shell script run by the batch daemon at execution time.

Windows The job file is a batch file processed by the batch daemon at execution time.
Administering Platform LSF

Chapter 2
How the System Works
Job Scheduling and Dispatch
Submitted jobs sit in queues until they are scheduled and dispatched to a host
for execution. When a job is submitted to LSF, many factors control when and
where the job starts to run:

◆ Active time window of the queue or hosts

◆ Resource requirements of the job

◆ Availability of eligible hosts

◆ Various job slot limits

◆ Job dependency conditions

◆ Fairshare constraints

◆ Load conditions

Scheduling policies

First-Come, First-
Served (FCFS)

scheduling

By default, jobs in a queue are dispatched in first-come, first-served (FCFS)
order. This means that jobs are dispatched according to their order in the
queue. Since jobs are ordered according to job priority, this does not
necessarily mean that jobs will be dispatched in the order of submission. The
order of jobs in the queue can also be modified by the user or administrator.

Fairshare
scheduling and

other policies

If a fairshare scheduling policy has been specified for the queue or if host
partitions have been configured, jobs are dispatched in accordance with these
policies instead. To solve diverse problems, LSF allows multiple scheduling
policies in the same cluster. LSF has several queue scheduling policies such as
exclusive, preemptive, fairshare, and hierarchical fairshare.

Scheduling and dispatch
Jobs are scheduled at regular intervals (5 seconds by default, configured by the
parameter JOB_SCHEDULING_INTERVAL in lsb.params). Once jobs are
scheduled, they are immediately dispatched to hosts.

To prevent overloading any host, LSF waits for a configured number of
dispatching intervals before sending another job to the same host. The waiting
time is configured by the JOB_ACCEPT_INTERVAL parameter in lsb.params
or lsb.queues; the default is one dispatch interval. If
JOB_ACCEPT_INTERVAL is set to zero, more than one job can be started on a
host in the same dispatch turn.
Administering Platform LSF 37

Job Scheduling and Dispatch

38
Dispatch order
Jobs are not necessarily dispatched in order of submission.

Each queue has a priority number set by an LSF Administrator when the queue
is defined. LSF tries to start jobs from the highest priority queue first.

By default, LSF considers jobs for dispatch in the following order:

◆ For each queue, from highest to lowest priority

◆ For each job in the queue, according to FCFS order

◆ If any host is eligible to run this job, start the job on the best eligible host,
and mark that host ineligible to run any other job until
JOB_ACCEPT_INTERVAL has passed

Jobs can be dispatched out of turn if pre-execution conditions are not met,
specific hosts or resources are busy or unavailable, or a user has reached the
user job slot limit.

Viewing job order
in queue

Use bjobs to see the order in which jobs in a queue will actually be dispatched
for the FCFS policy.

Changing job
order in queue

(btop and bbot)

Use the btop and bbot commands to change the job order in the queue.

See “Changing Job Order Within Queues” on page 97 for more information.
Administering Platform LSF

Chapter 2
How the System Works
Host Selection
Each time LSF attempts to dispatch a job, it checks to see which hosts are
eligible to run the job. A number of conditions determine whether a host is
eligible:

◆ Host dispatch windows

◆ Resource requirements of the job

◆ Resource requirements of the queue

◆ Host list of the queue

◆ Host load levels

◆ Job slot limits of the host.

A host is only eligible to run a job if all the conditions are met. If a job is
queued and there is an eligible host for that job, the job is placed on that host.
If more than one host is eligible, the job is started on the best host based on
both the job and the queue resource requirements.

Host load levels
A host is available if the values of the load indices (such as r1m, pg, mem) of
the host are within the configured scheduling thresholds. There are two sets of
scheduling thresholds: host and queue. If any load index on the host exceeds
the corresponding host threshold or queue threshold, the host is not eligible
to run any job.

Viewing host load
levels

◆ Use the bhosts -l command to display the host thresholds.

◆ Use the bqueues -l command to display the queue thresholds.

Eligible hosts
When LSF tries to place a job, it obtains current load information for all hosts.

The load levels on each host are compared to the scheduling thresholds
configured for that host in the Host section of lsb.hosts, as well as the per-
queue scheduling thresholds configured in lsb.queues.

If any load index exceeds either its per-queue or its per-host scheduling
threshold, no new job is started on that host.

Viewing eligible
hosts

The bjobs -lp command displays the names of hosts that cannot accept a
job at the moment together with the reasons the job cannot be accepted.
Administering Platform LSF 39

Host Selection

40
Resource requirements
Resource requirements at the queue level can also be used to specify
scheduling conditions (for example, r1m<0.4 && pg<3).

A higher priority or earlier batch job is only bypassed if no hosts are available
that meet the requirements of that job.

If a host is available but is not eligible to run a particular job, LSF looks for a
later job to start on that host. LSF starts the first job found for which that host
is eligible.
Administering Platform LSF

Chapter 2
How the System Works
Job Execution Environment
When LSF runs your jobs, it tries to make it as transparent to the user as
possible. By default, the execution environment is maintained to be as close to
the submission environment as possible. LSF will copy the environment from
the submission host to the execution host. The execution environment
includes the following:

◆ Environment variables needed by the job

◆ Working directory where the job begins running

◆ Other system-dependent environment settings; for example, resource
usage limits and umask:

Since a network can be heterogeneous, it is often impossible or undesirable to
reproduce the submission host’s execution environment on the execution host.
For example, if home directory is not shared between submission and
execution host, LSF runs the job in the /tmp on the execution host. If the
DISPLAY environment variable is something like Unix:0.0, or :0.0, then it
must be processed before using on the execution host. These are automatically
handled by LSF.

To change the default execution environment, use:

◆ A job starter
◆ bsub -L

For resource control, LSF also changes some of the execution environment of
jobs. These include nice values, resource usage limits, or any other
environment by configuring a job starter.

Shared user directories
LSF works best when user home directories are shared across all hosts in the
cluster. To provide transparent remote execution, you should share user home
directories on all LSF hosts.

To provide transparent remote execution, LSF commands determine the user’s
current working directory and use that directory on the remote host.

For example, if the command cc file.c is executed remotely, cc only finds
the correct file.c if the remote command runs in the same directory.

LSF automatically creates an .lsbatch subdirectory in the user’s home
directory on the execution host. This directory is used to store temporary input
and output files for jobs.
Administering Platform LSF 41

Job Execution Environment

42
Executables and the PATH environment variable
Search paths for executables (the PATH environment variable) are passed to
the remote execution host unchanged. In mixed clusters, LSF works best when
the user binary directories (for example, /usr/bin, /usr/local/bin) have
the same path names on different host types. This makes the PATH variable
valid on all hosts.

LSF configuration files are normally stored in a shared directory. This makes
administration easier. There is little performance penalty for this, because the
configuration files are not frequently read.

See “Default Directory Structures” on page 50 for more information on LSF
installation directories.
Administering Platform LSF

Chapter 2
How the System Works
Fault Tolerance
LSF is designed to continue operating even if some of the hosts in the cluster
are unavailable. One host in the cluster acts as the master, but if the master
host becomes unavailable another host takes over. LSF services are available
as long as there is one available host in the cluster.

LSF can tolerate the failure of any host or group of hosts in the cluster. When
a host crashes, all jobs running on that host are lost. No other pending or
running jobs are affected. Important jobs can be submitted to LSF with an
option to automatically restart if the job is lost because of a host failure.

Dynamic master host
The LSF master host is chosen dynamically. If the current master host becomes
unavailable, another host takes over automatically. The master host selection
is based on the order in which hosts are listed in the
lsf.cluster.cluster_name file. If the first host in the file is available, that
host acts as the master. If the first host is unavailable, the second host takes
over, and so on. LSF might be unavailable for a few minutes while hosts are
waiting to be contacted by the new master.

Running jobs are managed by SBD on each batch server host. When the new
MBD starts up it polls the SBDs on each host and finds the current status of its
jobs. If SBD fails but the host is still running, jobs running on the host are not
lost. When SBD is restarted it regains control of all jobs running on the host.

Network failure
If the cluster is partitioned by a network failure, a master LIM takes over on
each side of the partition. Interactive load-sharing remains available, as long as
each host still has access to the LSF executables.

Event log file (lsb.events)
Fault tolerance in LSF depends on the event log file, lsb.events, which is
kept on the primary file server. Every event in the system is logged in this file,
including all job submissions and job and host state changes. If the master host
becomes unavailable, a new master is chosen by the LIMs. SBD on the new
master starts a new MBD. The new MBD reads the lsb.events file to recover
the state of the system.

For sites not wanting to rely solely on a central file server for recovery
information, LSF can be configured to maintain a duplicate event log by
keeping a replica of lsb.events. The replica is stored on the file server, and
used if the primary copy is unavailable. When using LSF’s duplicate event log
function, the primary event log is stored on the first master host, and re-
synchronized with the replicated copy when the host recovers.
Administering Platform LSF 43

Fault Tolerance

44
Partitioned network
If the network is partitioned, only one of the partitions can access
lsb.events, so batch services are only available on one side of the partition.
A lock file is used to guarantee that only one MBD is running in the cluster.

Host failure
If an LSF server host fails, jobs running on that host are lost. No other jobs are
affected. Jobs can be submitted so that they are automatically rerun from the
beginning or restarted from a checkpoint on another host if they are lost
because of a host failure.

If all of the hosts in a cluster go down, all running jobs are lost. When a host
comes back up and takes over as master, it reads the lsb.events file to get
the state of all batch jobs. Jobs that were running when the systems went down
are assumed to have exited, and email is sent to the submitting user. Pending
jobs remain in their queues, and are scheduled as hosts become available.
Administering Platform LSF

P A R T

I
Managing Your Cluster

Contents ◆ Chapter 3, “Working with Your Cluster”

◆ Chapter 4, “Working with Hosts”

◆ Chapter 5, “Working with Queues”

◆ Chapter 6, “Managing Jobs”

◆ Chapter 7, “Managing Users and User Groups”

C H A P T E R

3
Working with Your Cluster

Contents ◆ “Viewing Cluster Information” on page 48

◆ “Default Directory Structures” on page 50

◆ “Cluster Administrators” on page 53

◆ “Controlling Daemons” on page 54

◆ “Controlling mbatchd” on page 56

◆ “Reconfiguring Your Cluster” on page 57
Administering Platform LSF 47

Viewing Cluster Information

48
Viewing Cluster Information
LSF provides commands for users to get information about the cluster. Cluster
information includes the cluster master host, cluster name, cluster resource
definitions, cluster administrator, and so on.

Viewing LSF version, cluster name, and current master host

Use the lsid command to display the version of LSF, the name of your cluster,
and the current master host:

% lsid
LSF 5.0, May 3 2002
Copyright 1992-2002 Platform Computing Corporation

My cluster name is cluster1
My master name is hostA

Viewing cluster administrators
Use the lsclusters command to find out who your cluster administrator is
and see a summary of your cluster:

% lsclusters
CLUSTER_NAME STATUS MASTER_HOST ADMIN HOSTS SERVERS
cluster1 ok hostA lsfadmin 6 6

If you are using the LSF MultiCluster product, you will see one line for each of
the clusters that your local cluster is connected to in the output of lsclusters.

Viewing configuration parameters
Use the bparams command to display the generic configuration parameters of
LSF. These include default queues, default host or host model for CPU speed
scaling, job dispatch interval, job checking interval, job accepting interval, etc.

% bparams
Default Queues: normal idle
Default Host Specification: DECAXP
Job Dispatch Interval: 20 seconds
Job Checking Interval: 15 seconds
Job Accepting Interval: 20 seconds

Use the -l option of bparams to display the information in long format, which
gives a brief description of each parameter as well as the name of the
parameter as it appears in lsb.params.

To view the ... Run ...

Version of LSF lsid

Cluster name lsid

Current master host lsid

Cluster administrators lsclusters

Configuration parameters bparams
Administering Platform LSF

Chapter 3
Working with Your Cluster
% bparams -l

System default queues for automatic queue selection:
DEFAULT_QUEUE = normal idle

The interval for dispatching jobs by master batch daemon:
MBD_SLEEP_TIME = 20 (seconds)

The interval for checking jobs by slave batch daemon:
SBD_SLEEP_TIME = 15 (seconds)

The interval for a host to accept two batch jobs subsequently:
JOB_ACCEPT_INTERVAL = 1 (* MBD_SLEEP_TIME)

The idle time of a host for resuming pg suspended jobs:
PG_SUSP_IT = 180 (seconds)

The amount of time during which finished jobs are kept in core:
CLEAN_PERIOD = 3600 (seconds)

The maximum number of finished jobs that are logged in current event file:
MAX_JOB_NUM = 2000

The maximum number of retries for reaching a slave batch daemon:
MAX_SBD_FAIL = 3

The number of hours of resource consumption history:
HIST_HOURS = 5

The default project assigned to jobs.
DEFAULT_PROJECT = default
Administering Platform LSF 49

Default Directory Structures

50
Default Directory Structures

UNIX
The following diagram shows a typical directory structure for a new UNIX
installation. Depending on which products you have installed and platforms
you have selected, your directory structure may vary

version

cluster_name

LSF_TOP

lsbatch

configdir

cluster_name

lsf_cmdir

lsf_indir

lsb.event.lock

man aix4logdir

badmin
bjobs
lsadmin
…

lim
res
sba
…

etcbin

make.def
make.misc
…

conf_tmpl

misc

examples

instlib

lsfinstall
hostsetup
...

scripts

install

lsf

lsbatch.h
lsf.h

include

1 2 3 4

5

6

8

9

Key

files

directories

7

12

LSF_CONFDIR1

LSB_SHARED2

LSF_LOGDIR3

LSF_VERSION4

LSB_CONFDIR5

LSF_MANDIR6

Machine-dep7

LSF_INCLUDE8

LSF_BINDIR9

LSF_SERVERD10

LSF_LIBDIR11

LSF_MISC12

conf work log

lsb.hosts
lsb.params
lsb.queues
…

license.dat
lsf.cluster.cluster_name
lsf.conf
lsf.shared
lsf.task

cshrc.lsf
profile.lsf

info
Administering Platform LSF

Chapter 3
Working with Your Cluster
Pre-4.2 UNIX installation directory structure
The following diagram shows a cluster installed with lsfsetup. It uses the
pre-4.2 directory structure.
Administering Platform LSF 51

Default Directory Structures

52
Windows
The following diagram shows the directory structure for a default Windows
installation.

lsbatch.h
lsf.h

lsf

bin conf examples include

lsf

logdir

cluster_name

lib logs scripts work

badmin
bjobs
lsadmin
�
xbmod
xlsadmin
xlsbatch
�

lsbatch

cluster_name

configdir

lsb.alarms
lsb.calendar
lsb.hosts
lsb.nqsmaps
lsb.params
lsb.queues
lsb.users

license.dat
lsf.cluster.cluster_name
lsf.install
lsf.shared
lsf.task
passwd.lsfuser

directories

files

Key

etc

lsf.conf

lim
res
sbatchd
�

html
Administering Platform LSF

Chapter 3
Working with Your Cluster
Cluster Administrators

Primary cluster
administrator

Required. The first cluster administrator, specified during installation. The
primary LSF administrator account owns the configuration and log files. The
primary LSF administrator has permission to perform clusterwide operations,
change configuration files, reconfigure the cluster, and control jobs submitted
by all users.

Cluster
administrators

Optional. May be configured after installation.

Cluster administrators can perform administrative operations on all jobs and
queues in the cluster. Cluster administrators have the same cluster-wide
operational privileges as the primary LSF administrator except that they do not
necessarily have permission to change LSF configuration files.

Adding cluster administrators
1 In the ClusterAdmins section of lsf.cluster.cluster_name, specify

the list of cluster administrators following ADMINISTRATORS, separated by
spaces. The first administrator in the list is the primary LSF administrator.
All others are cluster administrators. You can specify user names and group
names. For example:
Begin ClusterAdmins
ADMINISTRATORS = lsfadmin admin1 admin2
End ClusterAdmins

2 Save your changes.

3 Run lsadmin reconfig to reconfigure LIM.

4 Run badmin reconfig to reconfigure mbatchd.
Administering Platform LSF 53

Controlling Daemons

54
Controlling Daemons

Prerequisites
To control all daemons in the cluster, you must:

◆ Be logged on as root or a user listed in the /etc/lsf.sudoers file

See the Platform LSF Reference for configuration details of lsf.sudoers.

◆ Be able to run the rsh or ssh commands across all LSF hosts without
having to enter a password.

See your operating system documentation for information about
configuring the rsh and ssh commands.

Daemon commands
The following is an overview of commands you use to control LSF daemons.

Daemon Action Command Permissions

All in cluster Start lsfstartup Must be root or a user listed in
lsf.sudoers for all these
commands

Shut down lsfshutdown

sbatchd Start badmin hstartup [host_name ...|all] Must be root or a user listed in
lsf.sudoers for the startup
command

Restart badmin hrestart [host_name ...|all] Must be root or the LSF
administrator for other
commands.

Shut down badmin hshutdown [host_name ...|all]

mbatchd
mbschd

Restart badmin mbdrestart Must be root or the LSF
administrator for these
commands

Shut down 1 badmin hshutdown
2 badmin mbdrestart

Reconfigure badmin reconfig

RES Start lsadmin resstartup [host_name ...|all] Must be root or a user listed in
lsf.sudoers for the startup
command

Shut down lsadmin resshutdown [host_name ...|all] Must be the LSF administrator for
other commandsRestart lsadmin resrestart [host_name ...|all]

LIM Start lsadmin limstartup [host_name ...|all] Must be root or a user listed in
lsf.sudoers for the startup
command

Shut down lsadmin limshutdown [host_name ...|all] Must be the LSF administrator for
other commandsRestart lsadmin limrestart [host_name ...|all]

Restartall
in cluster

lsadmin reconfig
Administering Platform LSF

Chapter 3
Working with Your Cluster
sbatchd
Restarting sbatchd on a host does not affect jobs that are running on that host.

If sbatchd is shut down, the host is not available to run new jobs. Existing
jobs running on that host continue, but the results are not sent to the user until
sbatchd is later started.

LIM and RES
Jobs running on the host are not affected by restarting the daemons.

If a daemon is not responding to network connections, lsadmin displays an
error message with the host name. In this case you must kill and restart the
daemon manually.

If the LIM on the current master host is shut down, another host automatically
takes over as master.

If the RES is shut down while remote interactive tasks are running on the host,
the running tasks continue but no new tasks are accepted.
Administering Platform LSF 55

Controlling mbatchd

56
Controlling mbatchd
When you reconfigure the cluster with the command badmin reconfig,
mbatchd is not restarted. Only configuration files are reloaded.

If you add a host to a host group, or a host to a queue, the new host is not
recognized by jobs that were submitted before you reconfigured. If you want
the new host to be recognized, you must restart mbatchd.

Restarting mbatchd
Run badmin mbdrestart. LSF checks configuration files for errors and prints
the results to stderr. If no errors are found, the following occurs:

◆ Configuration files are reloaded.

◆ mbatchd is restarted.

◆ Events in lsb.events are reread and replayed to recover the running state
of the last mbatchd.

Whenever mbatchd is restarted, it is unavailable to service requests. In large
clusters where there are many events in lsb.events, restarting mbatchd can
take some time. To avoid replaying events in lsb.events, use the command
badmin reconfig.

Shutting down mbatchd
1 Run badmin hshutdown to shut down sbatchd on the master host. For

example:
% badmin hshutdown hostD
Shut down slave batch daemon on <hostD> done

2 Run badmin mbdrestart:
% badmin mbdrestart
Checking configuration files ...
No errors found.

This causes mbatchd to exit. It cannot be restarted, because sbatchd is
shut down. All LSF services are temporarily unavailable, but existing jobs
are not affected. When mbatchd is later started by sbatchd, its previous
status is restored from the event log file and job scheduling continues.
Administering Platform LSF

Chapter 3
Working with Your Cluster
Reconfiguring Your Cluster
After changing LSF configuration files, you must tell LSF to reread the files to
update the configuration. The commands you can use to reconfigure a cluster
are:

◆ lsadmin reconfig
◆ badmin reconfig
◆ badmin mbdrestart

The reconfiguration commands you use depend on which files you change in
LSF. The following table is a quick reference.

Reconfiguring the cluster with lsadmin and badmin
1 Log on to the host as root or the LSF administrator.

2 Run lsadmin reconfig to reconfigure LIM:
% lsadmin reconfig
Checking configuration files ...
No errors found.

Do you really want to restart LIMs on all hosts? [y/n] y
Restart LIM on <hosta> done
Restart LIM on <hostc> done
Restart LIM on <hostd> done

The lsadmin reconfig command checks for configuration errors.

If no errors are found, you are asked to confirm that you want to restart
lim on all hosts and lim is reconfigured. If fatal errors are found,
reconfiguration is aborted.

After making changes to ... Use ... Which ...

hosts badmin reconfig reloads configuration files

lsb.hosts badmin reconfig reloads configuration files

lsb.modules badmin reconfig reloads configuration files

lsb.nqsmaps badmin reconfig reloads configuration files

lsb.params badmin reconfig reloads configuration files

lsb.queues badmin reconfig reloads configuration files

lsb.resources badmin reconfig reloads configuration files

lsb.users badmin reconfig reloads configuration files

lsf.cluster.cluster_name lsadmin reconfig AND
badmin reconfig

reconfigures LIM and reloads
configuration files

lsf.conf lsadmin reconfig AND
badmin reconfig

reconfigures LIM and reloads
configuration files

lsf.shared lsadmin reconfig AND
badmin reconfig

reconfigures LIM and reloads
configuration files

lsf.sudoers badmin reconfig reloads configuration files

lsf.task lsadmin reconfig AND
badmin reconfig

reconfigures LIM and reloads
configuration files
Administering Platform LSF 57

Reconfiguring Your Cluster

58
3 Run badmin reconfig to reconfigure mbatchd:
% badmin reconfig
Checking configuration files ...
No errors found.
Do you want to reconfigure? [y/n] y
Reconfiguration initiated

The badmin reconfig command checks for configuration errors.

If no fatal errors are found, you are asked to confirm reconfiguration. If
fatal errors are found, reconfiguration is aborted.

Reconfiguring the cluster by restarting mbatchd
If the lsb.events file is large, or many jobs are running, restarting mbatchd
can take some time. In addition, mbatchd is not available to service requests
while it is restarted.

Run badmin mbdrestart to restart mbatchd:

% badmin mbdrestart
Checking configuration files ...
No errors found.
Do you want to restart? [y/n] y
MBD restart initiated

The badmin mbdrestart command checks for configuration errors.

If no fatal errors are found, you are asked to confirm mbatchd restart. If fatal
errors are found, the command exits without taking any action.

Viewing configuration errors
You can view configuration errors by using the following commands:

◆ lsadmin ckconfig -v
◆ badmin ckconfig -v

This reports all errors to your terminal.

How reconfiguring the cluster affects licenses
If the license server goes down, LSF can continue to operate for a period of
time until it attempts to renew licenses.

Reconfiguring causes LSF to renew licenses. If no license server is available,
LSF will not reconfigure the system because the system would lose all its
licenses and stop working.

If you have multiple license servers, reconfiguration will proceed as long as
LSF can contact at least one license server. In this case, LSF will still lose the
licenses on servers that are down, so LSF may have fewer licenses available
after reconfiguration.
Administering Platform LSF

C H A P T E R

4
Working with Hosts

Contents ◆ “Host States” on page 60

◆ “Viewing Host Information” on page 62

◆ “Controlling Hosts” on page 65

◆ “Adding a Host” on page 66

◆ “Removing a Host” on page 71

◆ “Adding Host Types and Host Models to lsf.shared” on page 72

◆ “Registering Service Ports” on page 73

◆ “Host Naming” on page 75

◆ “Hosts with Multiple Addresses” on page 76

◆ “Host Groups” on page 79

◆ “Tuning CPU Factors” on page 81
Administering Platform LSF 59

Host States

60
Host States
Host states describe the ability of a host to accept and run batch jobs in terms
of daemon states, load levels, and administrative controls. The bhosts and
lsload commands display host states.

bhosts
Displays the current state of the host:

bhosts -l Displays the closed reasons. A closed host will not accept new batch jobs:

% bhosts
HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV
hostA ok - 55 2 2 0 0 0
hostB closed - 20 16 16 0 0 0
...
% bhosts -l hostB
HOST hostB
STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV DISPATCH_WINDOW
closed_Adm 23.10 - 55 2 2 0 0 0 -
CURRENT LOAD USED FOR SCHEDULING:

r15s r1m r15m ut pg io ls it tmp swp mem
Total 1.0 -0.0 -0.0 4% 9.4 148 2 3 4231M 698M 233M
Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 0M 0M 0M
LOAD THRESHOLD USED FOR SCHEDULING:

r15s r1m r15m ut pg io ls it tmp swp mem
loadSched - - - - - - - - - - -
loadStop - - - - - - - - - - -

STATUS Description

ok Host is available to accept and run new batch jobs.

unavail Host is down, or LIM and sbatchd are unreachable.

unreach LIM is running but sbatchd is unreachable.

closed Host will not accept new jobs. Use bhosts -l to display the reasons.

unlicensed Host does not have a valid license.

STATUS Description

closed_Adm An LSF administrator or root explicitly closed the host using badmin
hclose. Running jobs are not affected.

closed_Busy The value of a load index exceeded a threshold (configured in
lsb.hosts, displayed by bhosts -l). Running jobs are not affected.
Indices that exceed thresholds are identified with an asterisk (*).

closed_Excl An exclusive batch job (i.e., bsub -x) is running on the host.

closed_Full The configured maximum number of running jobs has been
reached. Running jobs will not be affected.

closed_LIM sbatchd is running but LIM is unreachable.

closed_Lock An LSF administrator or root explicitly locked the host using
lsadmin limlock. Running jobs are suspended (SSUSP).

closed_Wind Host is closed by a dispatch window defined in lsb.hosts. Running
jobs are not affected.
Administering Platform LSF

Chapter 4
Working with Hosts
lsload
Displays the current state of the host:

$ lsload
HOST_NAME status r15s r1m r15m ut pg ls it tmp swp mem
hostA ok 0.0 0.0 0.0 4% 0.4 0 4316 10G 302M 252M
hostB ok 1.0 0.0 0.0 4% 8.2 2 14 4231M 698M 232M
...

Status Description

ok Host is available to accept and run batch jobs and remote tasks.

-ok LIM is running but RES is unreachable.

busy Does not affect batch jobs, only used for remote task placement
(i.e., lsrun). The value of a load index exceeded a threshold
(configured in lsf.cluster.clustername, displayed by lshosts -l).
Indices that exceed thresholds are identified with an asterisk (*).

lockW Does not affect batch jobs, only used for remote task placement
(i.e., lsrun). Host is locked by a run window (configured in
lsf.cluster.clustername, displayed by lshosts -l).

lockU Will not accept new batch jobs or remote tasks. An LSF
administrator or root explicitly locked the host (i.e., lsadmin
limlock) or an exclusive batch job (i.e., bsub -x) is running on the
host. Running jobs are not affected.

unavail Host is down, or LIM is unreachable.

unlicensed The host does not have a valid license.
Administering Platform LSF 61

Viewing Host Information

62
Viewing Host Information
LSF uses some or all of the hosts in a cluster as execution hosts. The host list
is configured by the LSF administrator. Use the bhosts command to view host
information. Use the lsload command to view host load information.

Viewing all hosts in the cluster and their status
Run bhosts to display information about all hosts and their status. For
example:

% bhosts
HOST_NAME STATUS JL/U MAX NJOBS RUN SSUSP USUSP RSV
hostA ok 2 2 0 0 0 0 0
hostD ok 2 4 2 1 0 0 1
hostB ok 1 2 2 1 0 1 0

Viewing detailed server host information
Run bhosts -l host_name and lshosts -l host_name to display all
information about each server host such as the CPU speed factor and the load
thresholds to start, suspend, and resume jobs. For example:

% bhosts -l hostB
HOST hostB
STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV DISPATCH_WINDOWS
ok 20.20 - - 0 0 0 0 0 -
CURRENT LOAD USED FOR SCHEDULING:

r15s r1m r15m ut pg io ls it tmp swp mem
Total 0.1 0.1 0.1 9% 0.7 24 17 0 394M 396M 12M
Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 0M 0M 0M
LOAD THRESHOLD USED FOR SCHEDULING:

r15s r1m r15m ut pg io ls it tmp swp mem
loadSched - - - - - - - - - - -
loadStop - - - - - - - - - - -

% lshosts -l hostB
HOST_NAME: hostB
type model cpuf ncpus ndisks maxmem maxswp maxtmp rexpri server
Sun4 Ultra2 20.2 2 1 256M 710M 466M 0 Yes

RESOURCES: Not defined
RUN_WINDOWS: (always open)

To view... Run...

All hosts in the cluster and their status bhosts

Detailed server host information bhosts -l and lshosts -l

Host load by host lsload

Host architecture information lshosts

Host history badmin hhist

Host model and type information lsinfo
Administering Platform LSF

Chapter 4
Working with Hosts
LICENSES_ENABLED: (LSF_Base LSF_Manager LSF_MultiCluster LSF_Make LSF_Parallel)

LOAD_THRESHOLDS:
r15s r1m r15m ut pg io ls it tmp swp mem

- 1.0 - - - - - - - - 4M

Viewing host load by host
The lsload command reports the current status and load levels of hosts in a
cluster. The lshosts -l command shows the load thresholds.

The lsmon command provides a dynamic display of the load information. The
LSF administrator can find unavailable or overloaded hosts with these tools.

Run lsload to see load levels for each host. For example:

% lsload
HOST_NAME status r15s r1m r15m ut pg ls it tmp swp mem
hostD ok 1.3 1.2 0.9 92% 0.0 2 20 5M 148M 88M
hostB -ok 0.1 0.3 0.7 0% 0.0 1 67 45M 25M 34M
hostA busy 8.0 *7.0 4.9 84% 4.6 6 17 1M 81M 27M

The first line lists the load index names, and each following line gives the load
levels for one host.

Viewing host architecture information
An LSF cluster may consist of hosts of differing architectures and speeds. The
lshosts command displays configuration information about hosts. All these
parameters are defined by the LSF administrator in the LSF configuration files,
or determined by the LIM directly from the system.

Host types represent binary compatible hosts; all hosts of the same type can
run the same executable. Host models give the relative CPU performance of
different processors. For example:

% lshosts
HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES
hostD SUNSOL SunSparc 6.0 1 64M 112M Yes (solaris cserver)
hostB ALPHA DEC3000 10.0 1 94M 168M Yes (alpha cserver)
hostM RS6K IBM350 7.0 1 64M 124M Yes (cserver aix)
hostC SGI6 R10K 14.0 16 1024M 1896M Yes (irix cserver)
hostA HPPA HP715 6.0 1 98M 200M Yes (hpux fserver)

In the above example, the host type SUNSOL represents Sun SPARC systems
running Solaris, and SGI6 represents an SGI server running IRIX 6. The
lshosts command also displays the resources available on each host.

type The host CPU architecture. Hosts that can run the same binary programs
should have the same type.

An UNKNOWN type or model indicates the host is down, or LIM on the host is
down. See “UNKNOWN host type or model” on page 474 for instructions on
measures to take.
Administering Platform LSF 63

Viewing Host Information

64
When automatic detection of host type or model fails, the type or model is set
to DEFAULT. LSF will work on the host. A DEFAULT model may be inefficient
because of incorrect CPU factors. A DEFAULT type may cause binary
incompatibility because a job from a DEFAULT host type can be migrated to
another DEFAULT host type.

Viewing host history
Run badmin hhist to view the history of a host such as when it is opened or
closed. For example:

% badmin hhist hostB
Wed Nov 20 14:41:58: Host <hostB> closed by administrator <lsf>.
Wed Nov 20 15:23:39: Host <hostB> opened by administrator <lsf>.

Viewing host model and type information
Run lsinfo -m to display information about host models that exist in the
cluster:

% lsinfo -m
MODEL_NAME CPU_FACTOR ARCHITECTURE
PC1133 23.10 x6_1189_PentiumIIICoppermine
HP9K735 4.50 HP9000735_125
HP9K778 5.50 HP9000778
Ultra5S 10.30 SUNWUltra510_270_sparcv9
Ultra2 20.20 SUNWUltra2_300_sparc
Enterprise3000 20.00 SUNWUltraEnterprise_167_sparc

Run lsinfo -M to display all host models defined in lsf.shared:

% lsinfo -M
MODEL_NAME CPU_FACTOR ARCHITECTURE
UNKNOWN_AUTO_DETECT 1.00 UNKNOWN_AUTO_DETECT
DEFAULT 1.00
LINUX133 2.50 x586_53_Pentium75
PC200 4.50 i86pc_200
Intel_IA64 12.00 ia64
Ultra5S 10.30 SUNWUltra5_270_sparcv9
PowerPC_G4 12.00 x7400G4
HP300 1.00
SunSparc 12.00

Run lim -t to display the model of the current host. You must be the LSF
administrator to use this command:

% lim -t
Host Type : SOL732
Host Architecture : SUNWUltra2_200_sparcv9
Matched Type : SOL732
Matched Architecture : SUNWUltra2_300_sparc
Matched Model : Ultra2
CPU Factor : 20.2
Administering Platform LSF

Chapter 4
Working with Hosts
Controlling Hosts
Hosts are opened and closed by an LSF Administrator or root issuing a
command or through configured dispatch windows.

Closing a host
Run badmin hclose.:

% badmin hclose hostB
Close <hostB> done

If the command fails, it may be because the host is unreachable through
network problems, or because the daemons on the host are not running.

Opening a host
Run badmin hopen:

% badmin hopen hostB
Open <hostB> done

Dispatch Windows
A dispatch window specifies one or more time periods during which a host
will receive new batch jobs. The host will not recieve jobs outside of the
configured windows. Dispatch windows do not affect job submission and
running jobs (they are are allowed to run until completion). By default,
dispatch windows are not configured.

To configure dispatch windows:

1 Edit lsb.hosts.

2 Specify on or more time windows in the DISPATCH_WINDOW column.
For example:
Begin Host
HOST_NAME MXJ JL/U r1m pg ls tmp DISPATCH_WINDOW
...
hostB 1 1 3.5/4.5 15/ 12/15 0 (4:30-12:00)
...
End Host

3 Reconfigure the cluster:

a Run lsadmin reconfig to reconfigure LIM.

b Run badmin reconfig to reconfigure mbatchd.

4 Run bhosts -l to display the dispatch windows.
Administering Platform LSF 65

Adding a Host

66
Adding a Host
You use one of two scripts to add a host to an LSF cluster:

◆ lsfinstall

or

◆ lsfsetup

The script you use is determined by the script used to create your cluster:

◆ If you installed LSF 5.0 using lsfinstall, use it to add a host.

◆ If you upgraded your cluster to LSF 5.0 using lsfsetup, use it to add a
host.

To confirm which script to use, look for the LSF_TOP/mnt/ directory. If it
exists, use lsfsetup.

If you use lsfinstall to install the new host, ensure you follow the correct
procedure, depending on whether the type of host you are installing already
exists, or if you are installing a new host type.

See the Platform LSF Reference for more information about lsfinstall and
lsfsetup.

Adding a host of an existing type using lsfinstall

Compatibility
notice

lsfinstall is not compatible with clusters installed with lsfsetup. To add a
host to a cluster originally installed with lsfsetup, see “Adding a host using
lsfsetup” on page 68.

1 Verify that the host type already exists in your cluster:

a Log on to any host in the cluster. You do not need to be root.

b List the contents of the LSF_TOP/5.0 directory. The default is
/usr/share/lsf/5.0. If the host type currently exists, there will be a
subdirectory with the name of the host type. If it does not exist, go to
“Adding a host of a new type using lsfinstall” on page 67.

2 Add the host information to lsf.cluster.cluster_name:

a Log on to the LSF master host as root.

b Edit LSF_CONFDIR/lsf.cluster.cluster_name, and specify the
following in the Host section:

i The name of the host.

ii The model and type, or specify ! to automatically detect the type or
model.

iii Specify 1 for LSF server or 0 for LSF client. For example:
Begin Host
HOSTNAME model type server r1m mem RESOURCES REXPRI
hosta ! SUNSOL6 1 1.0 4 () 0
hostb ! SUNSOL6 0 1.0 4 () 0
hostc ! HPPA1132 1 1.0 4 () 0
hostd ! HPPA1164 1 1.0 4 () 0
End Host
Administering Platform LSF

Chapter 4
Working with Hosts
c Save your changes.

3 Run lsadmin reconfig to reconfigure LIM.

4 Run badmin reconfig to reconfigure mbatchd.

5 Run hostsetup to set up the new host and configure the daemons to start
automatically at boot from /usr/share/lsf/5.0/install:
./hostsetup --top="/usr/share/lsf/lsf_42" --boot="y"

6 Start LSF on the new host:
lsadmin limstartup
lsadmin resstartup
badmin hstartup

7 Run bhosts and lshosts to verify your changes.

❖ If any host type or host model is UNKNOWN, follow the steps in
“UNKNOWN host type or model” on page 474 to fix the problem.

❖ If any host type or host model is DEFAULT, follow the steps in
“DEFAULT host type or model” on page 474 to fix the problem.

Adding a host of a new type using lsfinstall

Compatibility
Notice

lsfinstall is not compatible with clusters installed with lsfsetup. To add a
host to a cluster originally installed with lsfsetup, see “Adding a host using
lsfsetup” on page 68.

1 Verify that the host type does not already exist in your cluster:

a Log on to any host in the cluster. You do not need to be root.

b List the contents of the LSF_TOP/5.0 directory. The default is
/usr/share/lsf/5.0. If the host type currently exists, there will be a
subdirectory with the name of the host type. If the host type already
exists, go to “Adding a host of an existing type using lsfinstall” on
page 66.

2 Get the LSF distribution tar file for the host type you want to add.

3 Log on as root to any host that can access the LSF install directory.

4 Change to the LSF install directory. The default is
/usr/share/lsf/5.0/install

5 Edit install.config:

a For LSF_TARDIR, specify the path to the tar file. For example:
LSF_TARDIR="/usr/share/lsf_distrib/5.0"

b For LSF_ADD_SERVERS, list the new host names enclosed in quotes
and separated by spaces. For example:
LSF_ADD_SERVERS="hosta hostb"

c Run ./lsfinstall -f install.config. This automatically creates
the host information in lsf.cluster.cluster_name.

6 Run lsadmin reconfig to reconfigure LIM.

7 Run badmin reconfig to reconfigure mbatchd.

8 Run hostsetup to set up the new host and configure the daemons to start
automatically at boot from /usr/share/lsf/5.0/install:
Administering Platform LSF 67

Adding a Host

68
./hostsetup --top="/usr/share/lsf/lsf_42" --boot="y"

9 Start LSF on the new host:
lsadmin limstartup
lsadmin resstartup
badmin hstartup

10 Run bhosts and lshosts to verify your changes.

❖ If any host type or host model is UNKNOWN, follow the steps in
“UNKNOWN host type or model” on page 474 to fix the problem.

❖ If any host type or host model is DEFAULT, follow the steps in
“DEFAULT host type or model” on page 474 to fix the problem.

Adding a host using lsfsetup

Compatibility
Notice

lsfsetup is not compatible with new LSF clusters installed with lsfinstall.
Only use lsfsetup to add hosts to a cluster originally installed with lsfsetup.
To add hosts installed with lsfinstall, see “Adding a host of an existing type
using lsfinstall” on page 66 or “Adding a host of a new type using
lsfinstall” on page 67.

1 Determine whether the host type already exists in your cluster:

a Log on to any host in the cluster. You do not need to be root.

b List the contents of the LSF_TOP/mnt directory. The default is
/usr/share/lsf/mnt. If the host type currently exists, there will be a
subdirectory with the name of the host type.

2 If the host type already exists in your cluster, go to step 3.

Otherwise, add the new host type to your cluster:

a Get the LSF distribution file for the host type you want to add. You do
not need to uncompress and untar the files— lsfsetup does this for
you.

b Log on to the host as root.

c Change to the host’s LSF_SERVERDIR. For example,
/usr/share/lsf/mnt/sparc-sol2/etc

d Run ./lsfsetup. The main menu is displayed. The Install.log file
is opened in the current working directory.

e Choose option 1, Install LSF Products.

f Choose option 3, Install Additional Host Types.

g Confirm the path to lsf.conf or enter the path to where lsf.conf is
located.

h Specify the path to the LSF distribution directory, which is the directory
where you put downloaded distribution files. lsfsetup searches this
directory and displays a list of host types available to install.

i Specify the host types to install separated by commas (for example 1,2).

j Specify or confirm the path to the installation directory, which is used
by lsfsetup to uncompress and extract the installation files. Ensure
that the directory has enough space to hold the files for all of the host
types you are installing.
Administering Platform LSF

Chapter 4
Working with Hosts
3 The directory LSF_TOP/mnt must be shared and mounted from the file
server to all hosts in the LSF cluster. Create and mount LSF_TOP/mnt on
the new LSF host:

a Log on to the LSF host as root.

b Create a local LSF_TOP/mnt directory. The default LSF_TOP is
/usr/share/lsf.

c Mount the LSF_TOP/mnt directory from the file server to the local
LSF_TOP/mnt directory with setuid enabled. Do not mount with the
nosuid flag. For example, on Solaris, use the following command to
mount LSF_TOP/mnt from a file server named HostA:
mount -F nfs -O HostA:/usr/share/lsf/mnt /usr/share/lsf/mnt

4 Set up the new LSF host with lsfsetup:

a Log on to the new LSF host as root.

b Change to the host’s LSF_SERVERDIR. For example,
/usr/share/lsf/mnt/sparc-sol2/etc

c Run ./lsfsetup. The lsfsetup main menu is displayed. The
Install.log file is opened in the current working directory.

d Choose option 2, Setup LSF Hosts.

e Confirm or enter the path to lsf.conf. The default is
/usr/share/lsf/mnt/conf/lsf.conf.

f Enter the name of the new host.

g Choose yes (y) to create symbolic links as shown below to machine-
dependent directories. This is the default.
ln -s /usr/share/lsf/mnt/aix4/bin /usr/share/lsf/bin
ln -s /usr/share/lsf/mnt/aix4/etc /usr/share/lsf/etc
ln -s /usr/share/lsf/mnt/aix4/lib /usr/share/lsf/lib

After creating symbolic links, lsfsetup checks configuration and logs
in as the LSF administrator.

h Specify whether you are installing a server or a client: choose yes (y)
to specify a server host. This is the default. Choose no (n) to specify a
client host.

i Choose no (y) to specify that you want to modify system startup scripts.
The default is no (n).

If you choose no, the system initialization files are not modified. You
must start and stop the LSF daemons manually at system startup and
shutdown.

lsfsetup checks the accessibility of the LSF files, installs lsf.conf on
the host, and creates a symbolic link from LSF_CONFDIR/lsf.conf to
LSF_ENVDIR/lsf.conf.

j Press Enter to continue. Host setup is complete.

5 Reconfigure the cluster:

a Run lsadmin reconfig to reconfigure LIM.

b Run badmin reconfig to reconfigure mbatchd.

6 Start LSF on the new host:
Administering Platform LSF 69

Adding a Host

70
lsadmin limstartup
lsadmin resstartup
badmin hstartup

7 Run bhosts and lshosts to verify your changes.

❖ If any host type or host model is UNKNOWN, follow the steps in
“UNKNOWN host type or model” on page 474 to fix the problem.

❖ If any host type or host model is DEFAULT, follow the steps in
“DEFAULT host type or model” on page 474 to fix the problem.
Administering Platform LSF

Chapter 4
Working with Hosts
Removing a Host
Removing a host from LSF involves preventing any additional jobs from
running on the host, removing the host from LSF, and removing the host from
the cluster.

CAUTION Never remove the master host from LSF. If you want to remove your current
default master from LSF, change lsf.cluster.cluster_name to assign a
different default master host. Then remove the host that was once the
master host.

1 Log on to the LSF host as root.

2 Run badmin hclose to close the host. This prevents jobs from being
dispatched to the host and allows running jobs to finish.

3 When all dispatched jobs are finished, run lsfshutdown to stop the LSF
daemons.

4 Remove any references to the host in the Host section of
LSF_CONFDIR/lsf.cluster.cluster_name.

5 Remove any other references to the host, if applicable, from the following
LSF configuration files:
❖ LSF_CONFDIR/lsf.shared
❖ LSB_CONFDIR/lsb.hosts

❖ LSB_CONFDIR/lsb.queues

6 Run lsadmin reconfig to reconfigure LIM.

7 Run badmin reconfig to reconfigure mbatchd.

8 If you configured LSF daemons to start automatically at system startup,
remove the LSF section from the host’s system startup files.

9 If any users of the host use lstcsh as their login shell, change their login
shell to tcsh or csh. Remove lstcsh from the /etc/shells file.
Administering Platform LSF 71

Adding Host Types and Host Models to lsf.shared

72
Adding Host Types and Host Models to lsf.shared
The lsf.shared file contains a list of host type and host model names for
most operating systems. You can add to this list or customize the host type and
host model names. A host type and host model name can be any alphanumeric
string up to 29 characters long.

Adding a custom host type or model
1 Log on as the LSF administrator on any host in the cluster.

2 Edit lsf.shared:

a For a new host type, modify the HostType section:
Begin HostType
TYPENAME # Keyword
DEFAULT
CRAYJ
CRAYC
CRAYT
DigitalUNIX
HPPA
IBMAIX4
SGI6
SUNSOL
SONY
WIN95
End HostType

b For a new host model, modify the HostModel section:

Add the new model and its CPU speed factor relative to other models.
For more details on tuning CPU factors, see “Tuning CPU Factors” on
page 81.

Begin HostModel
MODELNAME CPUFACTOR ARCHITECTURE # keyword
x86 (Solaris, NT, Linux): approximate values, based on SpecBench results
for Intel processors (Sparc/NT) and BogoMIPS results (Linux).
PC75 1.5 (i86pc_75 i586_75 x586_30)
PC90 1.7 (i86pc_90 i586_90 x586_34 x586_35 x586_36)
HP9K715 4.2 (HP9000715_100)
SunSparc 12.0 ()
CRAYJ90 18.0 ()
IBM350 18.0 ()
End HostModel

3 Save the changes to lsf.shared.

4 Run lsadmin reconfig to reconfigure LIM.

5 Run badmin reconfig to reconfigure mbatchd.
Administering Platform LSF

Chapter 4
Working with Hosts
Registering Service Ports
LSF uses UDP and TCP ports for communication. All hosts in the cluster must
use the same port numbers to communicate with each other.

By default, port numbers for LSF services are defined in the lsf.conf file. You
can, however, alternatively configure ports by modifying /etc/services or
the NIS or NIS+ database.

lsf.conf
1 Log on to any host as root.

2 Edit lsf.conf and add the following lines:
LSF_LIM_PORT=3879
LSF_RES_PORT=3878
LSB_MBD_PORT=3881
LSB_SBD_PORT=3882

3 Add the same entries to lsf.conf on every host.

4 Save lsf.conf.

5 Run lsadmin reconfig to reconfigure LIM.

6 Run badmin reconfig to reconfigure mbatchd.

7 Run lsfstartup to restart all daemons in the cluster.

/etc/services
Use the file LSF_TOP/version/install/instlib/example.services file
as a guide for adding LSF entries to the services database.

If any other service listed in your services database has the same port number
as one of the LSF services, you must change the port number for the LSF
service. You must use the same port numbers on every LSF host.

1 Log on to any host as root.

2 Edit the /etc/services file by adding the contents of the
LSF_TOP/version/install/instlib/example.services file:
/etc/services entries for LSF daemons
#
res 3878/tcp # remote execution server
lim 3879/udp # load information manager
mbatchd 3881/tcp # master lsbatch daemon
sbatchd 3882/tcp # slave lsbatch daemon
#
Add this if ident is not already defined
in your /etc/services file
ident 113/tcp auth tap # identd

3 Run lsadmin reconfig to reconfigure LIM.

4 Run badmin reconfig to reconfigure mbatchd.

5 Run lsfstartup to restart all daemons in the cluster.
Administering Platform LSF 73

Registering Service Ports

74
NIS or NIS+ database
If you are running NIS, you only need to modify the services database once
per NIS master. On some hosts the NIS database and commands are in the
/var/yp directory; on others, NIS is found in /etc/yp.

1 Log on to any host as root.

2 Shut down all the daemons in the cluster with the command lsfshutdown.

3 To find the name of the NIS master host, use the command:
% ypwhich -m services

4 Log on to the NIS master host as root.

5 Edit the /var/yp/src/services or /etc/yp/src/services file on the
NIS master host adding the contents of the
LSF_TOP/version/install/instlib/example.services file:
/etc/services entries for LSF daemons.
#
res 3878/tcp # remote execution server
lim 3879/udp # load information manager
mbatchd 3881/tcp # master lsbatch daemon
sbatchd 3882/tcp # slave lsbatch daemon
#
Add this if ident is not already defined
in your /etc/services file
ident 113/tcp auth tap # identd

Make sure that all the lines you add either contain valid service entries or
begin with a comment character (#). Blank lines are not allowed.

6 Change the directory to /var/yp or /etc/yp.

7 Use the following command:
% ypmake services

On some hosts the master copy of the services database is stored in a
different location.

On systems running NIS+ the procedure is similar. Refer to your system
documentation for more information.

8 Run lsadmin reconfig to reconfigure LIM.

9 Run badmin reconfig to reconfigure mbatchd.

10 Run lsfstartup to restart all daemons in the cluster.
Administering Platform LSF

Chapter 4
Working with Hosts
Host Naming
LSF needs to match host names with the corresponding Internet host
addresses.

LSF looks up host names and addresses the following ways:

◆ In the /etc/hosts file

◆ Sun Network Information Service/Yellow Pages (NIS or YP)

◆ Internet Domain Name Service (DNS).

DNS is also known as the Berkeley Internet Name Domain (BIND) or
named, which is the name of the BIND daemon.

Each host is configured to use one or more of these mechanisms.

Network addresses
Each host has one or more network addresses; usually one for each network
to which the host is directly connected. Each host can also have more than one
name.

Official host name The first name configured for each address is called the official name.

Host name aliases Other names for the same host are called aliases.

LSF uses the configured host naming system on each host to look up the
official host name for any alias or host address. This means that you can use
aliases as input to LSF, but LSF always displays the official name.

Host name services

Digital UNIX On Digital Unix systems, the /etc/svc.conf file controls which host name
service is used.

Solaris On Solaris systems, the /etc/nsswitch.conf file controls the name service.

Other UNIX
platforms

On other UNIX platforms, the following rules apply:

◆ If your host has an /etc/resolv.conf file, your host is using DNS for
name lookups

◆ If the command ypcat hosts prints out a list of host addresses and
names, your system is looking up names in NIS

◆ Otherwise, host names are looked up in the /etc/hosts file

For more information
The man pages for the gethostbyname function, the ypbind and named
daemons, the resolver functions, and the hosts, svc.conf,
nsswitch.conf, and resolv.conf files explain host name lookups in more
detail.
Administering Platform LSF 75

Hosts with Multiple Addresses

76
Hosts with Multiple Addresses

Multi-homed
hosts

Hosts that have more than one network interface usually have one Internet
address for each interface. Such hosts are called multi-homed hosts. LSF
identifies hosts by name, so it needs to match each of these addresses with a
single host name. To do this, the host name information must be configured
so that all of the Internet addresses for a host resolve to the same name.

There are two ways to do it:

◆ Modify the system hosts file (/etc/hosts) and the changes will affect the
whole system

◆ Create an LSF hosts file (LSF_CONFDIR/hosts) and LSF will be the only
application that resolves the addresses to the same host

Multiple network interfaces
Some system manufacturers recommend that each network interface, and
therefore, each Internet address, be assigned a different host name. Each
interface can then be directly accessed by name. This setup is often used to
make sure NFS requests go to the nearest network interface on the file server,
rather than going through a router to some other interface. Configuring this
way can confuse LSF, because there is no way to determine that the two
different names (or addresses) mean the same host. LSF provides a
workaround for this problem.

All host naming systems can be configured so that host address lookups always
return the same name, while still allowing access to network interfaces by
different names. Each host has an official name and a number of aliases, which
are other names for the same host. By configuring all interfaces with the same
official name but different aliases, you can refer to each interface by a different
alias name while still providing a single official name for the host.

Configuring the LSF hosts file
If your LSF clusters include hosts that have more than one interface and are
configured with more than one official host name, you must either modify the
host name configuration, or create a private hosts file for LSF to use.

The LSF hosts file is stored in LSF_CONFDIR. The format of
LSF_CONFDIR/hosts is the same as for /etc/hosts.

In the LSF hosts file, duplicate the system hosts database information, except
make all entries for the host use the same official name. Configure all the other
names for the host as aliases so that people can still refer to the host by any
name.

Example For example, if your /etc/hosts file contains:

AA.AA.AA.AA host-AA host # first interface
BB.BB.BB.BB host-BB # second interface
Administering Platform LSF

Chapter 4
Working with Hosts
then the LSF_CONFDIR/hosts file should contain:

AA.AA.AA.AA host host-AA # first interface
BB.BB.BB.BB host host-BB # second interface

Example /etc/hosts entries

No unique official
name

The following example is for a host with two interfaces, where the host does
not have a unique official name.

Address Official name Aliases
Interface on network A
AA.AA.AA.AA host-AA.domain host.domain host-AA host
Interface on network B
BB.BB.BB.BB host-BB.domain host-BB host

Looking up the address AA.AA.AA.AA finds the official name host-
AA.domain. Looking up address BB.BB.BB.BB finds the name host-
BB.domain. No information connects the two names, so there is no way for
LSF to determine that both names, and both addresses, refer to the same host.

To resolve this case, you must configure these addresses using a unique host
name. If you cannot make this change to the system file, you must create an
LSF hosts file and configure these addresses using a unique host name in that
file.

Both addresses
have the same

official name

Here is the same example, with both addresses configured for the same official
name.

Address Official name Aliases
Interface on network A
AA.AA.AA.AA host.domain host-AA.domain host-AA host
Interface on network B
BB.BB.BB.BB host.domain host-BB.domain host-BB host

With this configuration, looking up either address returns host.domain as the
official name for the host. LSF (and all other applications) can determine that
all the addresses and host names refer to the same host. Individual interfaces
can still be specified by using the host-AA and host-BB aliases.

Sun’s NIS uses the /etc/hosts file on the NIS master host as input, so the
format for NIS entries is the same as for the /etc/hosts file.

Since LSF can resolve this case, you do not need to create an LSF hosts file.
Administering Platform LSF 77

Hosts with Multiple Addresses

78
DNS configuration
The configuration format is different for DNS. The same result can be produced
by configuring two address (A) records for each Internet address. Following
the previous example:

name class type address
host.domain IN A AA.AA.AA.AA
host.domain IN A BB.BB.BB.BB
host-AA.domain IN A AA.AA.AA.AA
host-BB.domain IN A BB.BB.BB.BB

Looking up the official host name can return either address. Looking up the
interface-specific names returns the correct address for each interface.

PTR records in
DNS

Address-to-name lookups in DNS are handled using PTR records. The PTR
records for both addresses should be configured to return the official name:

address class type name
AA.AA.AA.AA.in-addr.arpa IN PTR host.domain
BB.BB.BB.BB.in-addr.arpa IN PTR host.domain

If it is not possible to change the system host name database, create the hosts
file local to the LSF system, and configure entries for the multi-homed hosts
only. Host names and addresses not found in the hosts file are looked up in
the standard name system on your host.
Administering Platform LSF

Chapter 4
Working with Hosts
Host Groups
You can define a host group within LSF or use an external executable to
retrieve host group members.

Use bhosts to view a list of existing hosts. Use bmgroup to view host group
membership use.

Where to use host groups
LSF host groups can be used in defining the following parameters in LSF
configuration files:

◆ HOSTS in lsb.queues for authorized hosts for the queue

◆ HOSTS in lsb.hosts in the HostPartition section to list host groups
that are members of the host partition

Configuring host groups
1 Log in as the LSF administrator to any host in the cluster.

2 Open lsb.hosts.

3 Add the HostGroup section if it does not exist.
Begin HostGroup
GROUP_NAME GROUP_MEMBER
groupA (all)
groupB (groupA ~hostA ~hostB)
groupC (hostX hostY hostZ)
groupD (groupC ~hostX)
groupE (all ~groupC ~hostB)
groupF (hostF groupC hostK)
desk_tops (hostD hostE hostF hostG)
Big_servers (!)
End HostGroup

4 Enter a group name under the GROUP_NAME column.

External host groups must be defined in the egroup executable.

5 Specify hosts in the GROUP_MEMBER column.

(Optional) To tell LSF that the group members should be retrieved using
egroup, put an exclamation mark (!) in the GROUP_MEMBER column.

6 Save your changes.

7 Run badmin ckconfig to check the group definition. If any errors are
reported, fix the problem and check the configuration again.

8 Do one of the following:

a Run badmin reconfig if you do not want the new group to be
recognized by jobs that were submitted before you reconfigured.

b Run badmin mbdrestart if you want the new host to be recognized
by jobs that were submitted before you reconfigured.
Administering Platform LSF 79

Host Groups

80
External host group requirements (egroup)
An external host group is a host group for which membership is not statically
configured, but is instead retrieved by running an external executable with the
name egroup. The egroup executable must be in the directory specified by
LSF_SERVERDIR.

This feature allows a site to maintain group definitions outside LSF and import
them into LSF configuration at initialization time.

The egroup executable is an executable you create yourself that lists group
names and hosts that belong to the group.

This executable must have the name egroup. When mbatchd is restarted, it
invokes the egroup executable and retrieves groups and group members. The
external executable egroup runs under the same account as mbatchd.

The egroup executable must write host names for the host groups to its
standard output, each name separated by white space.

The egroup executable must recognize the following command, since
mbatchd invokes external host groups with this command:

egroup -m host_group_name

where host_group_name is the name of the host group defined in the
executable egroup along with its members, and the host group is specified in
lsb.hosts.
Administering Platform LSF

Chapter 4
Working with Hosts
Tuning CPU Factors
CPU factors are used to differentiate the relative speed of different machines.
LSF runs jobs on the best possible machines so that response time is
minimized.

To achieve this, it is important that you define correct CPU factors for each
machine model in your cluster.

How CPU factors affect performance
Incorrect CPU factors can reduce performance the following ways.

◆ If the CPU factor for a host is too low, that host may not be selected for job
placement when a slower host is available. This means that jobs would not
always run on the fastest available host.

◆ If the CPU factor is too high, jobs are run on the fast host even when they
would finish sooner on a slower but lightly loaded host. This causes the
faster host to be overused while the slower hosts are underused.

Both of these conditions are somewhat self-correcting. If the CPU factor for a
host is too high, jobs are sent to that host until the CPU load threshold is
reached. LSF then marks that host as busy, and no further jobs will be sent
there. If the CPU factor is too low, jobs may be sent to slower hosts. This
increases the load on the slower hosts, making LSF more likely to schedule
future jobs on the faster host.

Guidelines for setting CPU factors
CPU factors should be set based on a benchmark that reflects your workload.
If there is no such benchmark, CPU factors can be set based on raw CPU
power.

The CPU factor of the slowest hosts should be set to 1, and faster hosts should
be proportional to the slowest.

Example Consider a cluster with two hosts: hostA and hostB. In this cluster, hostA
takes 30 seconds to run a benchmark and hostB takes 15 seconds to run the
same test. The CPU factor for hostA should be 1, and the CPU factor of hostB
should be 2 because it is twice as fast as hostA.

Viewing normalized ratings
Run lsload -N to display normalized ratings. LSF uses a normalized CPU
performance rating to decide which host has the most available CPU power.
Hosts in your cluster are displayed in order from best to worst. Normalized
CPU run queue length values are based on an estimate of the time it would
take each host to run one additional unit of work, given that an unloaded host
with CPU factor 1 runs one unit of work in one unit of time.
Administering Platform LSF 81

Tuning CPU Factors

82
Tuning CPU factors
1 Log in as the LSF administrator on any host in the cluster.

2 Edit lsf.shared, and change the HostModel section:
Begin HostModel
MODELNAME CPUFACTOR ARCHITECTURE # keyword
#HPUX (HPPA)
HP9K712S 2.5 (HP9000712_60)
HP9K712M 2.5 (HP9000712_80)
HP9K712F 4.0 (HP9000712_100)

See the Platform LSF Reference for information about the lsf.shared file.

3 Save the changes to lsf.shared.

4 Run lsadmin reconfig to reconfigure LIM.

5 Run badmin reconfig to reconfigure mbatchd.
Administering Platform LSF

C H A P T E R

5
Working with Queues

Contents ◆ “Queue States” on page 84

◆ “Viewing Queue Information” on page 85

◆ “Controlling Queues” on page 87

◆ “Adding and Removing Queues” on page 89

◆ “Managing Queues” on page 90
Administering Platform LSF 83

Queue States

84
Queue States
Queue states, displayed by bqueues, describe the ability of a queue to accept
and start batch jobs using a combination of the following states:

◆ Open queues accept new jobs

◆ Closed queues do not accept new jobs

◆ Active queues start jobs on available hosts

◆ Inactive queues hold all jobs

Queue state can be changed by an LSF administrator or root.

Queues can also be activated and inactivated by run and dispatch windows
(configured in lsb.queues, displayed by bqueues -l).

bqueues -l displays Inact_Adm when explicitly inactivated by an
Administrator (badmin qinact), and Inact_Win when inactivated by a run or
dispatch window.

State Description

Open:Active Accepts and starts new jobs—normal processing

Open:Inact Accepts and holds new jobs—collecting

Closed:Active Does not accept new jobs, but continues to start jobs—draining

Closed:Inact Does not accept new jobs and does not start jobs—all activity is
stopped
Administering Platform LSF

Chapter 5
Working with Queues
Viewing Queue Information
The bqueues command displays information about queues. The bqueues -l
option also gives current statistics about the jobs in a particular queue such as
the total number of jobs in the queue, the number of jobs running, suspended,
and so on.

In addition to the procedures listed here, see the bqueues(1) man page for
more details.

Viewing available queues and queue status
Run bqueues. You can view the current status of a particular queue or all
queues. The bqueues command also displays available queues in the cluster.

% bqueues
QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP
interactive 400 Open:Active - - - - 2 0 2 0
priority 43 Open:Active - - - - 16 4 11 1
night 40 Open:Inactive - - - - 4 4 0 0
short 35 Open:Active - - - - 6 1 5 0
license 33 Open:Active - - - - 0 0 0 0
normal 30 Open:Active - - - - 0 0 0 0
idle 20 Open:Active - - - - 6 3 1 2

A dash (-) in any entry means that the column does not apply to the row. In
this example some queues have no per-queue, per-user or per-processor job
limits configured, so the MAX, JL/U and JL/P entries are shown as a dash.

Viewing detailed queue information
To see the complete status and configuration for each queue, run bqueues -l.
You can specify queue names on the command-line to select specific queues.
In the example below, more detail is requested for the queue normal.

% bqueues -l normal
QUEUE: normal
--For normal low priority jobs, running only if hosts are lightly loaded.

This is the default queue.
PARAMETERS/STATISTICS
PRIO NICE STATUS MAX JL/U JL/P NJOBS PEND RUN SSUSP USUSP
40 20 Open:Active 100 50 11 1 1 0 0 0
Migration threshold is 30 min.

CPULIMIT RUNLIMIT
20 min of IBM350 342800 min of IBM350

FILELIMIT DATALIMIT STACKLIMIT CORELIMIT MEMLIMIT PROCLIMIT
20000 K 20000 K 2048 K 20000 K 5000 K 3

To view the... Run...

Available queues bqueues

Queue status bqueues

Detailed queue information bqueues -l

State change history of a queue badmin qhist

Queue administrators bqueues -l for queue
Administering Platform LSF 85

Viewing Queue Information

86
SCHEDULING PARAMETERS
r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - 0.7 1.0 0.2 4.0 50 - - - - -
loadStop - 1.5 2.5 - 8.0 240 - - - - -

SCHEDULING POLICIES: FAIRSHARE PREEMPTIVE PREEMPTABLE EXCLUSIVE
USER_SHARES: [groupA, 70] [groupB, 15] [default, 1]

DEFAULT HOST SPECIFICATION : IBM350

RUN_WINDOWS: 2:40-23:00 23:30-1:30
DISPATCH_WINDOWS: 1:00-23:50

USERS: groupA/ groupB/ user5
HOSTS: hostA, hostD, hostB
ADMINISTRATORS: user7
PRE_EXEC: /tmp/apex_pre.x > /tmp/preexec.log 2>&1
POST_EXEC: /tmp/apex_post.x > /tmp/postexec.log 2>&1
REQUEUE_EXIT_VALUES: 45

Viewing the state change history of a queue
Run badmin qhist to display the times when queues are opened, closed,
activated, and inactivated.

% badmin qhist
Wed Mar 31 09:03:14: Queue <normal> closed by user or administrator
<root>.

Wed Mar 31 09:03:29: Queue <normal> opened by user or administrator
<root>.

Viewing queue administrators
Use bqueues -l for the queue.
Administering Platform LSF

Chapter 5
Working with Queues
Controlling Queues
Queues are controlled by an LSF Administrator or root issuing a command or
through configured dispatch and run windows.

Closing a queue
Run badmin qclose:

% badmin qclose normal
Queue <normal> is closed

When a user tries to submit a job to a closed queue the following message is
displayed:

% bsub -q normal ...
normal: Queue has been closed

Opening a queue
Run badmin qopen:

% badmin qopen normal
Queue <normal> is opened

Inactivating a queue
Run badmin qinact:

% badmin qinact normal
Queue <normal> is inactivated

Activating a queue
Run badmin qact:

% badmin qact normal
Queue <normal> is activated

Dispatch Windows
A dispatch window specifies one or more time periods during which batch jobs
are dispatched to run on hosts. Jobs are not dispatched outside of configured
windows. Dispatch windows do not affect job submission and running jobs
(they are allowed to run until completion). By default, dispatch windows are
not configured, queues are always Active.

To configure dispatch window:

1 Edit lsb.queues

2 Create a DISPATCH_WINDOW keyword for the queue and specify one or
more time windows. For example:
Begin Queue
QUEUE_NAME = queue1
PRIORITY = 45
DISPATCH_WINDOW = 4:30-12:00
End Queue
Administering Platform LSF 87

Controlling Queues

88
3 Reconfigure the cluster using:
a lsadmin reconfig
b badmin reconfig

4 Run bqueues -l to display the dispatch windows.

Run Windows
A run window specifies one or more time periods during which jobs
dispatched from a queue are allowed to run. When a run window closes,
running jobs are suspended, and pending jobs remain pending. The
suspended jobs are resumed when the window opens again. By default, run
windows are not configured, queues are always Active and jobs can run until
completion.

To configure a run window:

1 Edit lsb.queues.

2 Create a RUN_WINDOW keyword for the queue and specify one or more
time windows. For example:
Begin Queue
QUEUE_NAME = queue1
PRIORITY = 45
RUN_WINDOW = 4:30-12:00
End Queue

3 Reconfigure the cluster using:
a lsadmin reconfig.
b badmin reconfig.

4 Run bqueues -l to display the run windows.
Administering Platform LSF

Chapter 5
Working with Queues
Adding and Removing Queues

Adding a queue
1 Log in as the LSF administrator on any host in the cluster.

2 Edit lsb.queues to add the new queue definition.

You can copy another queue definition from this file as a starting point;
remember to change the QUEUE_NAME of the copied queue.

3 Save the changes to lsb.queues.

4 Run badmin reconfig to reconfigure mbatchd.

Adding a queue does not affect pending or running jobs.

Removing a queue

Before removing a queue, make sure there are no jobs in that queue.

If there are jobs in the queue, move pending and running jobs to another
queue, then remove the queue. If you remove a queue that has jobs in it, the
jobs are temporarily moved to a queue named lost and found. Jobs in the
lost and found queue remain pending until the user or the LSF
administrator uses the bswitch command to switch the jobs into regular
queues. Jobs in other queues are not affected.

1 Log in as the LSF administrator on any host in the cluster.

2 Close the queue to prevent any new jobs from being submitted. For
example:
% badmin qclose night
Queue <night> is closed

3 Move all pending and running jobs into another queue. Below, the
bswitch -q night argument chooses jobs from the night queue, and
the job ID number 0 specifies that all jobs should be switched:
% bjobs -u all -q night
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_
TIME
5308 user5 RUN night hostA hostD job5 Nov 21 1
8:16
5310 user5 PEND night hostA hostC job10 Nov 21 1
8:17

% bswitch -q night idle 0
Job <5308> is switched to queue <idle>
Job <5310> is switched to queue <idle>

4 Edit lsb.queues and remove or comment out the definition for the queue
being removed.

5 Save the changes to lsb.queues.

6 Run badmin reconfig to reconfigure mbatchd.
Administering Platform LSF 89

Managing Queues

90
Managing Queues

Restricting host use by queues
You may want a host to be used only to run jobs submitted to specific queues.
For example, if you just added a host for a specific department such as
engineering, you may only want jobs submitted to the queues engineering1
and engineering2 to be able to run on the host.

1 Log on as root or the LSF administrator on any host in the cluster.

2 Edit lsb.queues, and add the host to the Hosts parameter of specific
queues.
Begin Queue
QUEUE_NAME = queue1
...
HOSTS=mynewhost hostA hostB

...
End Queue

3 Save the changes to lsb.queues.

4 Use badmin ckconfig to check the new queue definition. If any errors
are reported, fix the problem and check the configuration again.

5 Run badmin reconfig to reconfigure mbatchd.

6 If you add a host to a queue, the new host will not be recognized by jobs
that were submitted before you reconfigured. If you want the new host to
be recognized, you must use the command badmin mbdrestart. For
more details on badmin mbdrestart, see “Reconfiguring Your Cluster” on
page 57.

Adding queue administrators
Queue administrators are optionally configured after installation. They have
limited privileges; they can perform administrative operations (open, close,
activate, inactivate) on the specified queue, or on jobs running in the specified
queue. Queue administrators cannot operate on LSF daemons or on queues
they are not configured to administrate.

To switch a job from one queue to another, you must have adminstrator
privileges for both queues.

In the lsb.queues file, between Begin Queue and End Queue for the
appropriate queue, specify the ADMINISTRATORS parameter, followed by the
list of administrators for that queue. Separate the administrator names with a
space. You can specify user names and group names. For example:

Begin Queue
ADMINISTRATORS = User1 GroupA
End Queue
Administering Platform LSF

C H A P T E R

6
Managing Jobs

Contents ◆ “Job States” on page 92

◆ “Viewing Job Information” on page 96

◆ “Changing Job Order Within Queues” on page 97

◆ “Switching Jobs from One Queue to Another” on page 98

◆ “Forcing Job Execution” on page 99

◆ “Suspending and Resuming Jobs” on page 100

◆ “Killing Jobs” on page 101

◆ “Sending a Signal to a Job” on page 102
Administering Platform LSF 91

Job States

92
Job States
The bjobs command displays the current state of the job.

Normal job states Most jobs enter only three states:

Suspended job
states

If a job is suspended, it has three states:

State transitions A job goes through a series of state transitions until it eventually completes its
task, fails, or is terminated. The possible states of a job during its life cycle are
shown in the diagram.

Viewing running
jobs

Use the bjobs -r command to display running jobs.

Viewing done jobs Use the bjobs -d command to display recently completed jobs.

Job state Description

PEND Waiting in a queue for scheduling and dispatch

RUN Dispatched to a host and running

DONE Finished normally with a zero exit value

Job state Description

PSUSP Suspended by its owner or the LSF administrator while in PEND
state

USUSP Suspended by its owner or the LSF administrator after being
dispatched

SSUSP Suspended by the LSF system after being dispatched

SSUSP

RUN

USUSP

EXIT

PSUSP

PEND
bsub

bstop

bresume

bkill
or abnormal
exit

DONE

suitable host found

migration

normal
completion

host OK host overloaded

bkill

bstop bresume

bkill
Administering Platform LSF

Chapter 6
Managing Jobs
Pending jobs
A job remains pending until all conditions for its execution are met. Some of
the conditions are:

◆ Start time specified by the user when the job is submitted

◆ Load conditions on qualified hosts

◆ Dispatch windows during which the queue can dispatch and qualified
hosts can accept jobs

◆ Run windows during which jobs from the queue can run

◆ Limits on the number of job slots configured for a queue, a host, or a user

◆ Relative priority to other users and jobs

◆ Availability of the specified resources

◆ Job dependency and pre-execution conditions

Viewing pending
reasons

Use the bjobs -p command to display the reason why a job is pending.

Suspended jobs
A job can be suspended at any time. A job can be suspended by its owner, by
the LSF administrator, by the root user (superuser), or by LSF.

After a job has been dispatched and started on a host, it can be suspended by
LSF. When a job is running, LSF periodically checks the load level on the
execution host. If any load index is beyond either its per-host or its per-queue
suspending conditions, the lowest priority batch job on that host is suspended.

If the load on the execution host or hosts becomes too high, batch jobs could
be interfering among themselves or could be interfering with interactive jobs.
In either case, some jobs should be suspended to maximize host performance
or to guarantee interactive response time.

LSF suspends jobs according to the priority of the job’s queue. When a host is
busy, LSF suspends lower priority jobs first unless the scheduling policy
associated with the job dictates otherwise.

Jobs are also suspended by the system if the job queue has a run window and
the current time goes outside the run window.

A system-suspended job can later be resumed by LSF if the load condition on
the execution hosts falls low enough or when the closed run window of the
queue opens again.

Viewing suspension reasons
Use the bjobs -s command to display the reason why a job was suspended.
Administering Platform LSF 93

Job States

94
WAIT state (chunk jobs)
If you have configured chunk job queues, members of a chunk job that are
waiting to run are displayed as WAIT by bjobs. Any jobs in WAIT status are
included in the count of pending jobs by bqueues and busers, even though
the entire chunk job has been dispatched and occupies a job slot. The bhosts
command shows the single job slot occupied by the entire chunk job in the
number of jobs shown in the NJOBS column.

You can switch (bswitch) or migrate (bmig) a chunk job member in WAIT
state to another queue.

Viewing wait
status and wait

reason

Use the bhist -l command to display jobs in WAIT status. Jobs are shown as
Waiting ...

The bjobs -l command does not display a WAIT reason in the list of pending
jobs.

See Chapter 23, “Chunk Job Dispatch” for more information about chunk jobs.

Exited jobs
A job might terminate abnormally for various reasons. Job termination can
happen from any state. An abnormally terminated job goes into EXIT state. The
situations where a job terminates abnormally include:

◆ The job is cancelled by its owner or the LSF administrator while pending,
or after being dispatched to a host.

◆ The job is not able to be dispatched before it reaches its termination
deadline, and thus is aborted by LSF.

◆ The job fails to start successfully. For example, the wrong executable is
specified by the user when the job is submitted.

The job exits with a non-zero exit status.

Post-execution states
Some jobs may not be considered complete until some post-job processing is
performed. For example, a job may need to exit from a post-execution job
script, clean up job files, or transfer job output after the job completes.

The DONE or EXIT job states do not indicate whether post-processing is
complete, so jobs that depend on processing may start prematurely. Use the
post_done and post_err keywords on the bsub -w command to specify job
dependency conditions for job post-processing. The corresponding job states
POST_DONE and POST_ERR indicate the state of the post-processing.

After the job completes, you cannot perform any job control on the post-
processing. Post-processing exit codes are not reported to LSF. The post-
processing of a repetitive job cannot be longer than the repetition period.
Administering Platform LSF

Chapter 6
Managing Jobs
Viewing post-
execution states

Use the bhist command to display the POST_DONE and POST_ERR states.
The resource usage of post-processing is not included in the job resource
usage.

Chapter 27, “Pre-Execution and Post-Execution Commands” for more
information.
Administering Platform LSF 95

Viewing Job Information

96
Viewing Job Information
The bjobs command is used to display job information. By default, bjobs
displays information for the user who invoked the command. For more
information about bjobs, see the LSF Reference and the bjobs(1) man page.

View all jobs for all users
Run bjobs -u all to display all jobs for all users. Job information is displayed
in the following order:

1 Running jobs

2 Pending jobs in the order in which they will be scheduled

3 Jobs in high priority queues are listed before those in lower priority queues

For example:

% bjobs -u all
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
1004 user1 RUN short hostA hostA job0 Dec 16 09:23
1235 user3 PEND priority hostM job1 Dec 11 13:55
1234 user2 SSUSP normal hostD hostM job3 Dec 11 10:09
1250 user1 PEND short hostA job4 Dec 11 13:59

Viewing jobs for specific users
Run bjobs -u user_name to display jobs for a specific user. For example:

% bjobs -u user1
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
2225 user1 USUSP normal hostA job1 Nov 16 11:55
2226 user1 PSUSP normal hostA job2 Nov 16 12:30
2227 user1 PSUSP normal hostA job3 Nov 16 12:31
Administering Platform LSF

Chapter 6
Managing Jobs
Changing Job Order Within Queues
By default, LSF dispatches jobs in a queue in the order of arrival (that is,
first-come-first-served), subject to availability of suitable server hosts.

Use the btop and bbot commands to change the position of pending jobs, or
of pending job array elements, to affect the order in which jobs are considered
for dispatch. Users can only change the relative position of their own jobs, and
LSF administrators can change the position of any users’ jobs.

bbot
Moves jobs relative to your last job in the queue.

If invoked by a regular user, bbot moves the selected job after the last job with
the same priority submitted by the user to the queue.

If invoked by the LSF administrator, bbot moves the selected job after the last
job with the same priority submitted to the queue.

btop
Moves jobs relative to your first job in the queue.

If invoked by a regular user, btop moves the selected job before the first job
with the same priority submitted by the user to the queue.

If invoked by the LSF administrator, btop moves the selected job before the
first job with the same priority submitted to the queue.

Moving a job to the top of the queue
In the following example, job 5311 is moved to the top of the queue. Since job
5308 is already running, job 5311 is placed in the queue after job 5308.

Note that user1’s job is still in the same position on the queue. user2 cannot
use btop to get extra jobs at the top of the queue; when one of his jobs moves
up the queue, the rest of his jobs move down.

% bjobs -u all
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
5308 user2 RUN normal hostA hostD /s500 Oct 23 10:16
5309 user2 PEND night hostA /s200 Oct 23 11:04
5310 user1 PEND night hostB /myjob Oct 23 13:45
5311 user2 PEND night hostA /s700 Oct 23 18:17

% btop 5311
Job <5311> has been moved to position 1 from top.

% bjobs -u all
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
5308 user2 RUN normal hostA hostD /s500 Oct 23 10:16
5311 user2 PEND night hostA /s200 Oct 23 18:17
5310 user1 PEND night hostB /myjob Oct 23 13:45
5309 user2 PEND night hostA /s700 Oct 23 11:04
Administering Platform LSF 97

Switching Jobs from One Queue to Another

98
Switching Jobs from One Queue to Another
You can use the command bswitch to change jobs from one queue to another.
This is useful if you submit a job to the wrong queue, or if the job is suspended
because of queue thresholds or run windows and you would like to resume
the job.

Switching a single job
Run bswitch to move pending and running jobs from queue to queue.

In the following example, job 5309 is switched to the priority queue:

% bswitch priority 5309
Job <5309> is switched to queue <priority>

% bjobs -u all
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
5308 user2 RUN normal hostA hostD /job500 Oct 23 10:16
5309 user2 RUN priority hostA hostB /job200 Oct 23 11:04
5311 user2 PEND night hostA /job700 Oct 23 18:17
5310 user1 PEND night hostB /myjob Oct 23 13:45

Switching all jobs
Run bswitch -q from_queue to_queue 0 to switch all the jobs in a queue
to another queue. The example below selects jobs from the night queue and
switches them to the idle queue.

The -q option is used to operate on all jobs in a queue. The job ID number 0
specifies that all jobs from the night queue should be switched to the idle
queue:

% bswitch -q night idle 0
Job <5308> is switched to queue <idle>
Job <5310> is switched to queue <idle>
Administering Platform LSF

Chapter 6
Managing Jobs
Forcing Job Execution
A pending job can be forced to run with the brun command. This operation
can only be performed by an LSF administrator.

You can force a job to run on a particular host, to run until completion, and
other restrictions. For more information, see the brun command.

When a job is forced to run, any other constraints associated with the job such
as resource requirements or dependency conditions are ignored. In this
situation you may see some job slot limits, such as the maximum number of
jobs that can run on a host, being violated. A job that is forced to run cannot
be preempted.

Forcing a pending job to run
Run brun -m hostname job_ID to force a pending job to run. You must
specify the host on which the job will run. For example, the following
command will force the sequential job 104 to run on hostA:

% brun -m hostA 104
Administering Platform LSF 99

Suspending and Resuming Jobs

100
Suspending and Resuming Jobs
A job can be suspended by its owner or the LSF administrator. These jobs are
considered user-suspended and are displayed by bjobs as USUSP.

If a user suspends a high priority job from a non-preemptive queue, the load
may become low enough for LSF to start a lower priority job in its place. The
load created by the low priority job can prevent the high priority job from
resuming. This can be avoided by configuring preemptive queues.

Suspending a job
Run bstop job_ID. Your job goes into USUSP state if the job is already
started, or into PSUSP state if it is pending. For example:

% bstop 3421
Job <3421> is being stopped

suspends job 3421.

UNIX bstop sends the following signals to the job:

◆ SIGTSTP for parallel or interactive jobs

SIGTSTP is caught by the master process and passed to all the slave
processes running on other hosts.

◆ SIGSTOP for sequential jobs

SIGSTOP cannot be caught by user programs. The SIGSTOP signal can be
configured with the LSB_SIGSTOP parameter in lsf.conf.

Windows bstop causes the job to be suspended.

Resuming a job
Run bresume job_ID. For example:

% bresume 3421
Job <3421> is being resumed

resumes job 3421.

Resuming a user-suspended job does not put your job into RUN state
immediately. If your job was running before the suspension, bresume first puts
your job into SSUSP state and then waits for sbatchd to schedule it according
to the load conditions.
Administering Platform LSF

Chapter 6
Managing Jobs
Killing Jobs
The bkill command cancels pending batch jobs and sends signals to running
jobs. By default, on UNIX, bkill sends the SIGKILL signal to running jobs.

Before SIGKILL is sent, SIGINT and SIGTERM are sent to give the job a chance
to catch the signals and clean up. The signals are forwarded from mbatchd to
sbatchd. sbatchd waits for the job to exit before reporting the status. Because
of these delays, for a short period of time after the bkill command has been
issued, bjobs may still report that the job is running.

On Windows, job control messages replace the SIGINT and SIGTERM signals,
and termination is implemented by the TerminateProcess() system call.

Killing a job
Run bkill job_ID:

% bkill 3421
Job <3421> is being terminated

kills job 3421.

Forcing removal of a job from LSF
Run bkill -r to force the removal of the job from LSF. Use this option when
a job cannot be killed in the operating system.

The bkill -r command removes a job from the LSF system without waiting
for the job to terminate in the operating system. This sends the same series of
signals as bkill without -r, except that the job is removed from the system
immediately, the job is marked as EXIT, and job resources that LSF monitors
are released as soon as LSF receives the first signal.
Administering Platform LSF 101

Sending a Signal to a Job

102
Sending a Signal to a Job
LSF uses signals to control jobs, to enforce scheduling policies, or in response
to user requests. The principal signals LSF uses are SIGSTOP to suspend a job,
SIGCONT to resume a job, and SIGKILL to terminate a job.

Occasionally, you may want to override the default actions. For example,
instead of suspending a job, you might want to kill or checkpoint it. You can
override the default job control actions by defining the JOB_CONTROLS
parameter in your queue configuration. Each queue can have its separate job
control actions.

You can also send a signal directly to a job. You cannot send arbitrary signals
to a pending job; most signals are only valid for running jobs. However, LSF
does allow you to kill, suspend and resume pending jobs.

You must be the owner of a job or an LSF administrator to send signals to a job.

You use the bkill -s command to send a signal to a job. If you issue bkill
without the -s option, a SIGKILL signal is sent to the specified jobs to kill
them. Twenty seconds before SIGKILL is sent, SIGTERM and SIGINT are sent
to give the job a chance to catch the signals and clean up.

On Windows, job control messages replace the SIGINT and SIGTERM signals,
but only customized applications are able to process them. Termination is
implemented by the TerminateProcess() system call.

Signals on different platforms
LSF translates signal numbers across different platforms because different host
types may have different signal numbering. The real meaning of a specific
signal is interpreted by the machine from which the bkill command is issued.

For example, if you send signal 18 from a SunOS 4.x host, it means SIGTSTP.
If the job is running on HP-UX and SIGTSTP is defined as signal number 25,
LSF sends signal 25 to the job.

Sending a signal to a job
Run bkill -s signal job_id, where signal is either the signal name or
the signal number. For example:

% bkill -s TSTP 3421
Job <3421> is being signaled

sends the TSTP signal to job 3421.

On most versions of UNIX, signal names and numbers are listed in the kill(1)
or signal(2) man pages. On Windows, only customized applications are able
to process job control messages specified with the -s option.
Administering Platform LSF

C H A P T E R

7
Managing Users and User Groups

Contents ◆ “Viewing User and User Group Information” on page 104

◆ “About User Groups” on page 106

◆ “Existing User Groups as LSF User Groups” on page 107

◆ “LSF User Groups” on page 108
Administering Platform LSF 103

Viewing User and User Group Information

104
Viewing User and User Group Information
You can display information about LSF users and user groups using the busers
and bugroup commands.

The busers command displays information about users and user groups. The
default is to display information about the user who invokes the command.
The busers command displays:

◆ Maximum number of jobs a user or group may execute on a single
processor

◆ Maximum number of job slots a user or group may use in the cluster

◆ Total number of job slots required by all submitted jobs of the user

◆ Number of job slots in the PEND, RUN, SSUSP, and USUSP states

The bugroup command displays information about user groups and which
users belong to each group.

The busers and bugroup commands have additional options. See the
busers(1) and bugroup(1) man pages for more details.

Viewing user information
Run busers all. For example:

% busers all
USER/GROUP JL/P MAX NJOBS PEND RUN SSUSP USUSP RSV
default 12 - - - - - - -
user9 1 12 34 22 10 2 0 0
groupA - 100 20 7 11 1 1 0

Viewing user group information
Run bugroup. For example:

% bugroup
GROUP_NAME USERS
testers user1 user2
engineers user3 user4 user10 user9
develop user4 user10 user11 user34 engineers/
system all users
Administering Platform LSF

Chapter 7
Managing Users and User Groups
Viewing user share information
Run bugroup -l, which displays user share group membership information in
long format. For example:

% bugroup -l
GROUP_NAME: testers
USERS: user1 user2
SHARES: user1, 4] [others, 10]

GROUP_NAME: engineers
USERS: user3 user4 user10 user9
SHARES: [others, 10] [user9, 4]

GROUP_NAME: system
USERS: all users
SHARES: [user9, 10] [others, 15]

GROUP_NAME: develop
USERS: user4 user10 user11 engineers/
SHARES: [engineers, 40] [user4, 15] [user10, 34] [user11, 16]
Administering Platform LSF 105

About User Groups

106
About User Groups
User groups act as aliases for lists of users. The administrator can also limit the
total number of running jobs belonging to a user or a group of users.

You can define user groups in LSF in several ways:

◆ Use existing user groups in the configuration files

◆ Create LSF-specific user groups

◆ Use an external executable to retrieve user group members

If desired, you can use all three methods, provided the user and group names
are different.
Administering Platform LSF

Chapter 7
Managing Users and User Groups
Existing User Groups as LSF User Groups
User groups already defined in your operating system often reflect existing
organizational relationships among users. It is natural to control computer
resource access using these existing groups.

You can specify existing UNIX user groups anywhere an LSF user group can
be specified.

How LSF recognizes UNIX user groups
Only group members listed in the /etc/group file or the file group.byname
NIS map are accepted. The user’s primary group as defined in the
/etc/passwd file is ignored.

The first time you specify a UNIX user group, LSF automatically creates an LSF
user group with that name, and the group membership is retrieved by
getgrnam(3) on the master host at the time mbatchd starts. The membership
of the group might be different from the one on another host. Once the LSF
user group is created, the corresponding UNIX user group might change, but
the membership of the LSF user group is not updated until you reconfigure LSF
(badmin). To specify a UNIX user group that has the same name as a user, use
a slash (/) immediately after the group name: group_name/.

Requirements UNIX group definitions referenced by LSF configuration files must be uniform
across all hosts in the cluster. Unexpected results can occur if the UNIX group
definitions are not homogeneous across machines.

How LSF resolves users and user groups with the same name
If an individual user and a user group have the same name, LSF assumes that
the name refers to the individual user. To specify the group name, append a
slash (/) to the group name.

For example, if you have both a user and a group named admin on your
system, LSF interprets admin as the name of the user, and admin/ as the name
of the group.

Where to use existing user groups
Existing user groups can be used in defining the following parameters in LSF
configuration files:

◆ USERS in lsb.queues for authorized queue users

◆ USER_NAME in lsb.users for user job slot limits

◆ USER_SHARES (optional) in lsb.hosts for host partitions or in
lsb.queues or lsb.users for queue fairshare policies
Administering Platform LSF 107

LSF User Groups

108
LSF User Groups
You can define an LSF user group within LSF or use an external executable to
retrieve user group members.

Use bgroup to view user groups and members, use busers to view all users
in the cluster.

Where to use LSF user groups
LSF user groups can be used in defining the following parameters in LSF
configuration files:

◆ USERS in lsb.queues for authorized queue users

◆ USER_NAME in lsb.users for user job slot limits

◆ USER_SHARES (optional) in lsb.hosts for host partitions or in
lsb.queues for queue fairshare policies

If you are using existing OS-level user groups instead of LSF-specific user
groups, you can also specify the names of these groups in the files mentioned
above.

Configuring user groups
1 Log in as the LSF administrator to any host in the cluster.

2 Open lsb.users.

3 Add the UserGroup section if it does not exist.
Begin UserGroup
GROUP_NAME GROUP_MEMBER USER_SHARES
financial (user1 user2 user3) ([user1, 4] [others, 10])
system (all) ([user2, 10] [others, 15])
regular_users (user1 user2 user3 user4)
part_time_users (!)
End UserGroup

4 Enter a group name under the GROUP_NAME column.

External user groups must be defined in the egroup executable.

5 Specify users in the GROUP_MEMBER column.

(Optional) To tell LSF that the group members should be retrieved using
egroup, put an exclamation mark (!) in the GROUP_MEMBER column.

6 (Optional) Configure shares in the USER_SHARES column.

7 Save your changes.

8 Run badmin ckconfig to check the new user group definition. If any
errors are reported, fix the problem and check the configuration again.

9 Run badmin reconfig to reconfigure the cluster.
Administering Platform LSF

Chapter 7
Managing Users and User Groups
External user group requirements (egroup)
An external user group is a user group for which membership is not statically
configured, but is instead retrieved by running an external executable with the
name egroup. The egroup executable must be in the directory specified by
LSF_SERVERDIR.

This feature allows a site to maintain group definitions outside LSF and import
them into LSF configuration at initialization time.

The egroup executable is an executable you create yourself that lists group
names and users who belong to the group.

This executable must have the name egroup. When mbatchd is restarted, it
invokes the egroup executable and retrieves groups and group members. The
external executable egroup runs under the same account as mbatchd.

The egroup executable must write user names for the user groups to its
standard output, each name separated by white space.

The egroup executable must recognize the following command, since
mbatchd invokes external user groups with this command:

egroup -u user_group_name

where user_group_name is the name of the user group defined in the
executable egroup along with its members, and the user group is specified in
lsb.users.
Administering Platform LSF 109

LSF User Groups

110
 Administering Platform LSF

P A R T

II
Working with Resources

Contents ◆ Chapter 8, “Understanding Resources”

◆ Chapter 9, “Adding Resources”

C H A P T E R

8
Understanding Resources

Contents ◆ “About LSF Resources” on page 114

◆ “How Resources are Classified” on page 116

◆ “How LSF Uses Resources” on page 119

◆ “Load Indices” on page 120

◆ “Static Resources” on page 124

◆ “Automatic Detection of Hardware Reconfiguration” on page 125
Administering Platform LSF 113

About LSF Resources

114
About LSF Resources
The LSF system uses built-in and configured resources to track job resource
requirements and schedule jobs according to the resources available on
individual hosts.

Viewing available resources

lsinfo Use lsinfo to list the resources available in your cluster. The lsinfo
command lists all the resource names and their descriptions:

% lsinfo
RESOURCE_NAME TYPE ORDER DESCRIPTION
r15s Numeric Inc 15-second CPU run queue length
r1m Numeric Inc 1-minute CPU run queue length (alias:cpu)
r15m Numeric Inc 15-minute CPU run queue length
ut Numeric Inc 1-minute CPU utilization (0.0 to 1.0)
pg Numeric Inc Paging rate (pages/second)
io Numeric Inc Disk IO rate (Kbytes/second)
ls Numeric Inc Number of login sessions (alias: login)
it Numeric Dec Idle time (minutes) (alias: idle)
tmp Numeric Dec Disk space in /tmp (Mbytes)
swp Numeric Dec Available swap space (Mbytes) (alias:swap)
mem Numeric Dec Available memory (Mbytes)
ncpus Numeric Dec Number of CPUs
ndisks Numeric Dec Number of local disks
maxmem Numeric Dec Maximum memory (Mbytes)
maxswp Numeric Dec Maximum swap space (Mbytes)
maxtmp Numeric Dec Maximum /tmp space (Mbytes)
cpuf Numeric Dec CPU factor
rexpri Numeric N/A Remote execution priority
server Boolean N/A LSF server host
irix Boolean N/A IRIX UNIX
hpux Boolean N/A HP_UX
solaris Boolean N/A Sun Solaris
cserver Boolean N/A Compute server
fserver Boolean N/A File server
aix Boolean N/A AIX UNIX
type String N/A Host type
model String N/A Host model
status String N/A Host status
hname String N/A Host name

TYPE_NAME
HPPA
SGI6
ALPHA
SUNSOL
RS6K
NTX86

MODEL_NAME CPU_FACTOR
DEC3000 10.00
Administering Platform LSF

Chapter 8
Understanding Resources
R10K 14.00
PENT200 6.00
IBM350 7.00
SunSparc 6.00
HP735 9.00
HP715 5.00

lshosts Use lshosts to get a list of the resources defined on a specific host:

% lshosts hostA
HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES
hostA SOL732 Ultra2 20.2 2 256M 679M Yes ()

Viewing host load by resource
Use lshosts -s to view host load by shared resource:

% lshosts -s
RESOURCE VALUE LOCATION
tot_lic 5 host1 host2
tot_scratch 500 host1 host2

The above output indicates that 5 licenses are available, and that the shared
scratch directory currently contains 500 MB of space.

The VALUE field indicates the amount of that resource. The LOCATION column
shows the hosts which share this resource. The lshosts -s command
displays static shared resources. The lsload -s command displays dynamic
shared resources.
Administering Platform LSF 115

How Resources are Classified

116
How Resources are Classified

By values

By the way values
change

By definitions

By scope

Boolean resources
Boolean resources (for example, server to denote LSF server hosts) have a
value of one (1) if they are defined for a host, and zero (0) if they are not
defined for the host. Use Boolean resources to configure host attributes to be
used in selecting hosts to run jobs. For example:

◆ Machines may have different types and versions of operating systems.

◆ Machines may play different roles in the system, such as file server or
compute server.

◆ Some machines may have special-purpose devices needed by some
applications.

◆ Certain software packages or licenses may be available only on some of
the machines.

Specify a Boolean resource in a resource requirement selection string of a job
to select only hosts that can run the job. For example,

Numerical resources Resources that take numerical values, such as all the load
indices, number of processors on a host, or host CPU factor

String resources Resources that take string values, such as host type, host
model, host status

Boolean resources Resources that denote the availability of specific features

Dynamic Resources Resources that change their values dynamically: host status
and all the load indices.

Static Resources Resources that do not change their values: all resources
except for load indices or host status.

Configured
Resources

Resources defined by user sites: external load indices and
resources defined in the lsf.shared file (shared resources).

Built-In Resources Resources that are always defined in LSF, such as load
indices, number of CPUs, or total swap space.

Host-Based
Resources

Resources that are not shared among hosts, but are tied to
individual hosts, such as swap space, CPU, or memory. An
application must run on a particular host to access the
resources. Using up memory on one host does not affect the
available memory on another host.

Shared Resources Resources that are not associated with individual hosts in the
same way, but are owned by the entire cluster, or a subset of
hosts within the cluster, such as floating licenses or shared file
systems. An application can access such a resource from any
host which is configured to share it, but doing so affects its
value as seen by other hosts.
Administering Platform LSF

Chapter 8
Understanding Resources
Some examples of Boolean resources:

Shared resources
Shared resources are configured resources that are not tied to a specific host,
but are associated with the entire cluster, or a specific subset of hosts within
the cluster. For example:

◆ Floating licenses for software packages

◆ Disk space on a file server which is mounted by several machines

◆ The physical network connecting the hosts

An application may use a shared resource by running on any host from which
that resource is accessible. For example, in a cluster in which each host has a
local disk but can also access a disk on a file server, the disk on the file server
is a shared resource, and the local disk is a host-based resource. In contrast to
host-based resources such as memory or swap space, using a shared resource
from one machine affects the availability of that resource as seen by other
machines. There will be one value for the entire cluster which measures the
utilization of the shared resource, but each host-based resource is measured
separately.

LSF does not contain any built-in shared resources. All shared resources must
be configured by the LSF administrator. A shared resource may be configured
to be dynamic or static. In the above example, the total space on the shared
disk may be static while the amount of space currently free is dynamic. A site
may also configure the shared resource to report numeric, string or Boolean
values.

The following restrictions apply to the use of shared resources in LSF products.

◆ A shared resource cannot be used as a load threshold in the Hosts section
of the lsf.cluster.cluster_name file.

◆ A shared resource cannot be used in the loadSched/loadStop thresholds,
or in the STOP_COND or RESUME_COND parameters in the queue
definition in the lsb.queues file.

Resource Name Describes Meaning of Example Name

cs role in cluster compute server

fs role in cluster file server

solaris operating system Solaris operating system

frame available software FrameMaker license
Administering Platform LSF 117

How Resources are Classified

118
Viewing shared resources for hosts
Run bhosts -s to view shared resources for hosts. For example:

% bhosts -s
RESOURCE TOTAL RESERVED LOCATION
tot_lic 5 0.0 hostA hostB
tot_scratch 00 0.0 hostA hostB
avail_lic 2 3.0 hostA hostB
avail_scratch 100 400.0 hostA hostB

The TOTAL column displays the value of the resource. For dynamic resources,
the RESERVED column displays the amount that has been reserved by running
jobs.
Administering Platform LSF

Chapter 8
Understanding Resources
How LSF Uses Resources
Jobs submitted through the LSF system will have the resources they use
monitored while they are running. This information is used to enforce resource
usage limits and load thresholds as well as for fairshare scheduling.

LSF collects information such as:

◆ Total CPU time consumed by all processes in the job

◆ Total resident memory usage in KB of all currently running processes in a
job

◆ Total virtual memory usage in KB of all currently running processes in a job

◆ Currently active process group ID in a job

◆ Currently active processes in a job

On UNIX, job-level resource usage is collected through a special process called
PIM (Process Information Manager). PIM is managed internally by LSF.

Viewing job resource usage
The -l option of the bjobs command displays the current resource usage of
the job. The usage information is sampled by PIM every 30 seconds and
collected by sbatchd at a maximum frequency of every SBD_SLEEP_TIME
(configured in the lsb.params file) and sent to mbatchd. The update is done
only if the value for the CPU time, resident memory usage, or virtual memory
usage has changed by more than 10 percent from the previous update, or if a
new process or process group has been created.

Viewing load on a host
Use bhosts -l to check the load levels on the host, and adjust the suspending
conditions of the host or queue if necessary. The bhosts -l command gives
the most recent load values used for the scheduling of jobs. A dash (-) in the
output indicates that the particular threshold is not defined.

% bhosts -l hostB
HOST: hostB
STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV
ok 20.00 2 2 0 0 0 0 0

CURRENT LOAD USED FOR SCHEDULING:
r15s r1m r15m ut pg io ls t tmp swp mem

Total 0.3 0.8 0.9 61% 3.8 72 26 0 6M 253M 297M
Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 0M 0M 0M

LOAD THRESHOLD USED FOR SCHEDULING:
r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - - - - - - - - - - -
loadStop - - - - - - - - - - -
Administering Platform LSF 119

Load Indices

120
Load Indices
Load indices are built-in resources that measure the availability of dynamic,
non-shared resources on hosts in the LSF cluster.

Load indices built into the LIM are updated at fixed time intervals.

External load indices are defined and configured by the LSF administrator. An
External Load Information Manager (ELIM) program collects the values of
configured external load indices and updates LIM when new values are
received.

Load indices collected by LIM
.

Status
The status index is a string indicating the current status of the host. This
status applies to the LIM and RES.

The possible values for status are:

Index Measures Units Direction Averaged
over

Update
Interval

status host status string 15 seconds

r15s run queue length processes increasing 15 seconds 15 seconds

r1m run queue length processes increasing 1 minute 15 seconds

r15m run queue length processes increasing 15 minutes 15 seconds

ut CPU utilization percent increasing 1 minute 15 seconds

pg paging activity pages in + pages out
per second

increasing 1 minute 15 seconds

ls logins users increasing N/A 30 seconds

it idle time minutes decreasing N/A 30 seconds

swp available swap space MB decreasing N/A 15 seconds

mem available memory MB decreasing N/A 15 seconds

tmp available space in temporary
file system

MB decreasing N/A 120 seconds

io disk I/O (shown by lsload -l) KB per second increasing 1 minute 15 seconds

name external load index configured by LSF administrator site-defined

Status Description

ok The host is available to accept remote jobs. The LIM can select the
host for remote execution.

-ok When the status of a host is preceded by a dash (-), it means
LIM is available but RES is not running on that host or is not
responding.

busy The host is overloaded (busy) because a load index exceeded a
configured threshold. An asterisk (*) marks the offending index.
LIM will not select the host for interactive jobs.

lockW The host is locked by its run window. Use lshosts to display run
windows.
Administering Platform LSF

Chapter 8
Understanding Resources
CPU run queue lengths (r15s, r1m, r15m)
The r15s, r1m and r15m load indices are the 15-second, 1-minute and 15-
minute average CPU run queue lengths. This is the average number of
processes ready to use the CPU during the given interval.

On UNIX, run queue length indices are not necessarily the same as the load
averages printed by the uptime(1) command; uptime load averages on some
platforms also include processes that are in short-term wait states (such as
paging or disk I/O).

Effective run
queue length

On multiprocessor systems, more than one process can execute at a time. LSF
scales the run queue value on multiprocessor systems to make the CPU load
of uniprocessors and multiprocessors comparable. The scaled value is called
the effective run queue length.

Use lsload -E to view the effective run queue length.

Normalized run
queue length

LSF also adjusts the CPU run queue based on the relative speeds of the
processors (the CPU factor). The normalized run queue length is adjusted for
both number of processors and CPU speed. The host with the lowest
normalized run queue length will run a CPU-intensive job the fastest.

Use lsload -N to view the normalized CPU run queue lengths.

CPU utilization (ut)
The ut index measures CPU utilization, which is the percentage of time spent
running system and user code. A host with no process running has a ut value
of 0 percent; a host on which the CPU is completely loaded has a ut of 100
percent.

Paging rate (pg)
The pg index gives the virtual memory paging rate in pages per second. This
index is closely tied to the amount of available RAM memory and the total size
of the processes running on a host; if there is not enough RAM to satisfy all
processes, the paging rate will be high. Paging rate is a good measure of how
a machine will respond to interactive use; a machine that is paging heavily
feels very slow.

Login sessions (ls)
The ls index gives the number of users logged in. Each user is counted once,
no matter how many times they have logged into the host.

lockU The host is locked by an LSF administrator or root.

unavail The host is down or the LIM on the host is not running or is not
responding.

unlicensed The host does not have a valid license.

Status Description
Administering Platform LSF 121

Load Indices

122
Interactive idle time (it)
On UNIX, the it index is the interactive idle time of the host, in minutes. Idle
time is measured from the last input or output on a directly attached terminal
or a network pseudo-terminal supporting a login session. This does not include
activity directly through the X server such as CAD applications or emacs
windows, except on Solaris and HP-UX systems.

On Windows NT, the it index is based on the time a screen saver has been
active on a particular host.

Temporary directories (tmp)
The tmp index is the space available in MB on the file system that contains the
temporary directory:

◆ /tmp on UNIX

◆ C:\temp on Windows NT

Swap space (swp)
The swp index gives the currently available virtual memory (swap space) in
MB. This represents the largest process that can be started on the host.

Memory (mem)
The mem index is an estimate of the real memory currently available to user
processes. This represents the approximate size of the largest process that
could be started on a host without causing the host to start paging.

LIM reports the amount of free memory available. LSF calculates free memory
as a sum of physical free memory, cached memory, buffered memory and an
adjustment value. The command vmstat also reports free memory but displays
these values separately. There may be a difference between the free memory
reported by LIM and the free memory reported by vmstat because of virtual
memory behavior variations among operating systems. You can write an ELIM
that overrides the free memory values returned by LIM.

I/O rate (io)
The io index measures I/O throughput to disks attached directly to this host,
in KB per second. It does not include I/O to disks that are mounted from other
hosts.
Administering Platform LSF

Chapter 8
Understanding Resources
Viewing information about load indices

lsinfo -l The lsinfo -l command displays all information available about load indices
in the system. You can also specify load indices on the command line to
display information about selected indices:

% lsinfo -l swp
RESOURCE_NAME: swp
DESCRIPTION: Available swap space (Mbytes) (alias: swap)
TYPE ORDER INTERVAL BUILTIN DYNAMIC RELEASE
Numeric Dec 60 Yes Yes NO

lsload -l The lsload -l command displays the values of all load indices. External load
indices are configured by your LSF administrator:

% lsload
HOST_NAME status r15s r1m r15m ut pg ls it tmp swp mem
hostN ok 0.0 0.0 0.1 1% 0.0 1 224 43M 67M 3M
hostK -ok 0.0 0.0 0.0 3% 0.0 3 0 38M 40M 7M
hostF busy 0.1 0.1 0.3 7% *17 6 0 9M 23M 28M
hostG busy *6.2 6.9 9.5 85% 1.1 30 0 5M 400M 385M
hostV unavail
Administering Platform LSF 123

Static Resources

124
Static Resources
Static resources are built-in resources that represent host information that does
not change over time, such as the maximum RAM available to user processes
or the number of processors in a machine. Most static resources are determined
by the LIM at start-up time, or when LSF detects hardware configuration
changes.

Static resources can be used to select appropriate hosts for particular jobs
based on binary architecture, relative CPU speed, and system configuration.

The resources ncpus, maxmem, maxswp, and maxtmp are not static on UNIX
hosts that support dynamic hardware reconfiguration.

Static resources reported by LIM

CPU factor (cpuf)
The CPU factor is the speed of the host’s CPU relative to other hosts in the
cluster. If one processor is twice the speed of another, its CPU factor should be
twice as large. The CPU factors are defined by the LSF administrator. For
multiprocessor hosts, the CPU factor is the speed of a single processor; LSF
automatically scales the host CPU load to account for additional processors.

Server
The server static resource is Boolean. It has the following values:

◆ 1 if the host is configured to run jobs from other hosts

◆ 0 if the host is an LSF client for submitting jobs to other hosts

Index Measures Units Determined by

type host type string configuration

model host model string configuration

hname host name string configuration

cpuf CPU factor relative configuration

server host can run remote jobs Boolean configuration

rexpri execution priority nice(2) argument configuration

ncpus number of processors processors LIM

ndisks number of local disks disks LIM

maxmem maximum RAM MB LIM

maxswp maximum swap space MB LIM

maxtmp maximum space in /tmp MB LIM
Administering Platform LSF

Chapter 8
Understanding Resources
Automatic Detection of Hardware Reconfiguration
Some UNIX operating systems support dynamic hardware reconfiguration—
that is, the attaching or detaching of system boards in a live system without
having to reboot the host.

Supported platforms
LSF is able to recognize changes in ncpus, maxmem, maxswp, maxtmp in the
following platforms:

◆ Sun Solaris 2.5+

◆ HP-UX 10.10+

◆ Compaq Alpha 5.0+

◆ IBM AIX 4.0+

◆ SGI IRIX 6.2+

Dynamic changes in ncpus
LSF is able to automatically detect a change in the number of processors in
systems that support dynamic hardware reconfiguration.

The local LIM checks if there is a change in the number of processors at an
internal interval of 2 minutes. If it detects a change in the number of
processors, the local LIM also checks maxmem, maxswp, maxtmp. The local LIM
then sends this new information to the master LIM.

Dynamic changes in maxmem, maxswp, maxtmp
If you dynamically change maxmem, maxswp, or maxtmp without changing the
number of processors, you need to restart the local LIM with the command
lsadmin limrestart so that it can recognize the changes.

If you dynamically change the number of processors and any of maxmem,
maxswp, or maxtmp, the change will be automatically recognized by LSF. When
it detects a change in the number of processors, the local LIM also checks
maxmem, maxswp, maxtmp.

Viewing dynamic hardware changes

lsxxx Commands There may be a 2 minute delay before the changes are recognized by lsxxx
commands (for example, before lshosts displays the changes).

bxxx Commands There may be at most a 2 + 10 minute delay before the changes are recognized
by bxxx commands (for example, before bhosts -l displays the changes).

This is because mbatchd contacts the master LIM at an internal interval of 10
minutes.
Administering Platform LSF 125

Automatic Detection of Hardware Reconfiguration

126
LSF MultiCluster Configuration changes from a local cluster are communicated from the master
LIM to the remote cluster at an interval of 2 * CACHE_INTERVAL. The
parameter CACHE_INTERVAL is configured in lsf.cluster.cluster_name
and is by default 60 seconds.

This means that for changes to be recognized in a remote cluster there is a
maximum delay of 2 minutes + 2*CACHE_INTERVAL.

How dynamic hardware changes affect LSF
LSF uses ncpus, maxmem, maxswp, maxtmp to make scheduling and load
decisions.

When processors are added or removed, LSF licensing is affected because LSF
licenses are based on the number of processors.

If you put a processor offline:

◆ Per host or per-queue load thresholds may be exceeded sooner. This is
because LSF uses the number of CPUS and relative CPU speeds to calculate
effective run queue length.

◆ The value of CPU run queue lengths (r15s, r1m, and r15m) increases.

◆ Jobs may also be suspended or not dispatched because of load thresholds.

◆ Per-processor job slot limit (PJOB_LIMIT in lsb.queues) may be
exceeded sooner.

If you put a new processor online:

◆ Load thresholds may be reached later.

◆ The value of CPU run queue lengths (r15s, r1m, and r15m) is decreased.

◆ Jobs suspended due to load thresholds may be resumed.

Per-processor job slot limit (PJOB_LIMIT in lsb.queues) may be reached
later.
Administering Platform LSF

C H A P T E R

9
Adding Resources

Contents ◆ “About Configured Resources” on page 128

◆ “Adding New Resources to Your Cluster” on page 129

◆ “Static Shared Resource Reservation” on page 133

◆ “External Load Indices and ELIM” on page 134

◆ “Modifying a Built-In Load Index” on page 138
Administering Platform LSF 127

About Configured Resources

128
About Configured Resources
LSF schedules jobs based on available resources. There are many resources
built into LSF, but you can also add your own resources, and then use them
same way as built-in resources.

For maximum flexibility, you should characterize your resources clearly
enough so that users have satisfactory choices. For example, if some of your
machines are connected to both Ethernet and FDDI, while others are only
connected to Ethernet, then you probably want to define a resource called
fddi and associate the fddi resource with machines connected to FDDI. This
way, users can specify resource fddi if they want their jobs to run on machines
connected to FDDI.
Administering Platform LSF

Chapter 9
Adding Resources
Adding New Resources to Your Cluster
To add host resources to your cluster, use the following steps:

1 Log in to any host in the cluster as the LSF administrator.

2 Define new resources in the Resource section of lsf.shared. Specify at
least a name and a brief description, which will be displayed to a user by
lsinfo.

See “Configuring lsf.shared Resource Section” on page 130.

3 For static Boolean resources, for all hosts that have the new resources, add
the resource name to the RESOURCES column in the Host section of
lsf.cluster.cluster_name.

4 For shared resources, for all hosts that have the new resources, associate
the resources with the hosts (you might also have a reason to configure
non-shared resources in this section).

See “Configuring lsf.cluster.cluster_name ResourceMap Section” on
page 131.

5 Reconfigure your cluster.
Administering Platform LSF 129

Configuring lsf.shared Resource Section

130
Configuring lsf.shared Resource Section
Configured resources are defined in the Resource section of lsf.shared.
There is no distinction between shared and non-shared resources.

You must specify at least a name and description for the resource, using the
keywords RESOURCENAME and DESCRIPTION.

◆ A resource name cannot begin with a number.

◆ A resource name cannot contain any of the following characters
: . () [+ - * / ! & | < > @ =

◆ A resource name cannot be any of the following reserved names:
cpu cpuf io logins ls idle maxmem maxswp maxtmp type model status
it mem ncpus ndisks pg r15m r15s r1m swap swp tmp ut

◆ Resource names are case sensitive

◆ Resource names can be up to 29 characters in length

You can also specify:

◆ The resource type (TYPE = Boolean | String | Numeric)

The default is Boolean.

◆ For dynamic resources, the update interval (INTERVAL, in seconds)

◆ For numeric resources, where a higher value indicates greater load
(INCREASING = Y)

◆ For numeric shared resources, where LSF releases the resource when a job
using the resource is suspended (RELEASE = Y)

When the optional attributes are not specified, the resource is treated as static
and Boolean.

Example Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION
mips Boolean () () (MIPS architecture)
dec Boolean () () (DECStation system)
scratch Numeric 30 N (Shared scratch space on
server)
synopsys Numeric 30 N (Floating licenses for
Synopsys)
verilog Numeric 30 N (Floating licenses for Verilog)
console String 30 N (User Logged in on console)
End Resource
Administering Platform LSF

Chapter 9
Adding Resources
Configuring lsf.cluster.cluster_name ResourceMap
Section

Resources are associated with the hosts for which they are defined in the
ResourceMap section of lsf.cluster.cluster_name.

For each resource, you must specify the name and the hosts that have it.

If the ResourceMap section is not defined, then any dynamic resources
specified in lsf.shared are not tied to specific hosts, but are shared across
all hosts in the cluster.

Example A cluster consists of hosts host1, host2, and host3.

Begin ResourceMap
RESOURCENAME LOCATION
verilog 5@[all ~host1 ~host2]
synopsys (2@[host1 host2] 2@[others])
console (1@[host1] 1@[host2]1@[host3])
xyz 1@[default]
End ResourceMap

In this example:

◆ 5 units of the verilog resource are defined on host3 only (all hosts
except host1 and host2).

◆ 2 units of the synopsys resource are shared between host1 and host2. 2
more units of the synopsys resource are defined on host3 (shared among
all the remaining hosts in the cluster).

◆ 1 unit of the console resource is defined on each host in the cluster
(assigned explicitly). 1 unit of the xyz resource is defined on each host in
the cluster (assigned with the keyword default).

RESOURCENAME
The name of the resource, as defined in lsf.shared.

LOCATION
Defines the hosts that share the resource. For a static resource, you must define
an initial value here as well. Do not define a value for a dynamic resource.

Possible states of a resource:

◆ Each host in the cluster has the resource

◆ The resource is shared by all hosts in the cluster

◆ There are multiple instances of a resource within the cluster, and each
instance is shared by a unique subset of hosts.
Administering Platform LSF 131

Configuring lsf.cluster.cluster_name ResourceMap Section

132
Syntax
([resource_value@][host_name... | all [~host_name]... | others | default] ...)

◆ For static resources, you must include the resource value, indicating the
quantity of the resource. For dynamic resources, you must not specify this
(information about dynamic resources is updated by ELIM).

◆ Type square brackets around the list of hosts, as shown. Square brackets
around the resource value and @ symbol indicate that this information is
used only with static resources. You can omit the parenthesis if you only
specify one set of hosts.

◆ Each set of hosts within square brackets specifies an instance of the
resource. The same host cannot be in more than one instance of a resource.
All hosts within the instance share the quantity of the resource indicated
by its value.

◆ The keyword all refers to all the server hosts in the cluster, collectively.
Use the not operator (~) to exclude hosts or host groups.

◆ The keyword others refers to all hosts not otherwise listed in the instance.

◆ The keyword default refers to each host in the cluster, individually.

Non-batch configuration
The following items should be taken into consideration when configuring
resources under LSF Base.

◆ In lsf.cluster.cluster_name, the Host section must precede the
ResourceMap section, since the ResourceMap section uses the host names
defined in the Host section.

◆ The RESOURCES column in the Host section of the
lsf.cluster.cluster_name file should be used to associate static
Boolean resources with particular hosts.

◆ Almost all resources specified in the ResourceMap section are interpreted
by LSF commands as shared resources, which are displayed using
lsload -s or lshosts -s. The exceptions are:

❖ Non-shared static resources

❖ Dynamic numeric resources specified using the default keyword.
These are host-based resources and behave like the built-in load
indices such as mem and swap. They are viewed using lsload -l or
lsload -I.
Administering Platform LSF

Chapter 9
Adding Resources
Static Shared Resource Reservation
You must use resource reservation to prevent over-committing static shared
resources when scheduling.

The usual situation is that you configure single-user application licenses as
static shared resources, and make that resource one of the job requirements.
You should also reserve the resource for the duration of the job. Otherwise,
LSF updates resource information, assumes that all the static shared resources
can be used, and places another job that requires that license. The additional
job cannot actually run if the license is already taken by a running job.

If every job that requests a license and also reserves it, LSF updates the number
of licenses at the start of each new dispatch turn, subtracts the number of
licenses that are reserved, and only dispatches additional jobs if there are
licenses available that are not already in use.

Reserving a static shared resource
To indicate that a shared resource is to be reserved while a job is running,
specify the resource name in the rusage section of the resource requirement
string.

Example You configured licenses for the Verilog application as a resource called
verilog_lic. To submit a job that will run on a host when there is a license
available:

% bsub -R "select[defined(verilog_lic)] rusage[verilog_lic=1]" myjob

If the job can be placed, the license it uses will be reserved until the job
completes.
Administering Platform LSF 133

External Load Indices and ELIM

134
External Load Indices and ELIM
LSF contains a LIM that collects built-in load indices that reflect the load
situations of CPU, memory, disk space, I/O, and interactive activities on
individual hosts.

While built-in load indices might be sufficient for most jobs, you might have
special workload or resource dependencies that require additional load
indices. You can write an External Load Information Manager (ELIM) that
gathers load and shared resource information from external load indices,
which are used the same as built in load indices for job scheduling and host
selection.

An ELIM can be as simple as a small script, or as complicated as a sophisticated
C program. A well-defined protocol allows the ELIM to talk to LIM.

◆ “How LSF uses ELIM for external resource collection” on page 134

◆ “Writing an ELIM” on page 135

◆ “Debugging an ELIM” on page 137

How LSF uses ELIM for external resource collection
The values of static external resources are specified through the
lsf.cluster.cluster_name configuration file. The values of all dynamic
resources, regardless of whether they are shared or host-based, are collected
through an ELIM.

When an ELIM is
started

An ELIM is started in the following situations:

◆ On every host, if any dynamic resource is configured as host-based. For
example, if the LOCATION field in the ResourceMap section of
lsf.cluster.cluster_name is ([default]), then every host will start an
ELIM.

◆ On the master host, for any cluster-wide resources. For example, if the
LOCATION field in the ResourceMap section of
lsf.cluster.cluster_name is ([all]), then an ELIM is started on the
master host.

◆ On the first host specified for each instance, if multiple instances of the
resource exist within the cluster. For example, if the LOCATION field in the
ResourceMap section of lsf.cluster.cluster_name is ([hostA hostB
hostC] [hostD hostE hostF]), then an ELIM will be stared on hostA
and hostD to report the value of that resource for that set of hosts.

If the host reporting the value for an instance goes down, then an ELIM is
started on the next available host in the instance. In above example, if
hostA became unavailable, an ELIM is started on hostB. If the hostA
becomes available again then the ELIM on hostB is shut down and the one
on hostA is started.

There is only one ELIM on each host, regardless of the number of resources
on which it reports. If only cluster-wide resources are to be collected, then an
ELIM will only be started on the master host.
Administering Platform LSF

Chapter 9
Adding Resources
Environment
variables

When LIM starts, the following environment variables are set for ELIM:

◆ LSF_MASTER: This variable is defined if the ELIM is being invoked on the
master host. It is undefined otherwise. This can be used to test whether the
ELIM should report on cluster-wide resources that only need to be
collected on the master host.

◆ LSF_RESOURCES: This variable contains a list of resource names (separated
by spaces) on which the ELIM is expected to report. A resource name is
only put in the list if the host on which the ELIM is running shares an
instance of that resource.

Writing an ELIM
The ELIM can be any executable program, either an interpreted script or
compiled code.

ELIM output The ELIM communicates with the LIM by periodically writing a load update
string to its standard output. The load update string contains the number of
indices followed by a list of name-value pairs in the following format:

number_indices [index_name index_value]...

For example,

3 tmp2 47.5 nio 344.0 licenses 5

This string reports three indices: tmp2, nio, and licenses, with values 47.5,
344.0, and 5 respectively. Index values must be numbers between
-INFINIT_LOAD and INFINIT_LOAD as defined in the lsf.h header file.

If the ELIM is implemented as a C program, as part of initialization it should
use setbuf(3) to establish unbuffered output to stdout.

The ELIM should ensure that the entire load update string is written
successfully to stdout. This can be done by checking the return value of
printf(3s) if the ELIM is implemented as a C program or as the return code
of /bin/echo(1) from a shell script. The ELIM should exit if it fails to write
the load information.

Each LIM sends updated load information to the master every 15 seconds.
Depending on how quickly your external load indices change, the ELIM
should write the load update string at most once every 15 seconds. If the
external load indices rarely change, the ELIM can write the new values only
when a change is detected. The LIM continues to use the old values until new
values are received.

ELIM location The executable for the ELIM must be in LSF_SERVERDIR and must have the
name elim. If LIM expects some resources to be collected by an ELIM
according to configuration, it invokes the ELIM automatically on startup. The
ELIM runs with the same user ID and file access permission as the LIM.
Administering Platform LSF 135

External Load Indices and ELIM

136
ELIM restart The LIM restarts the ELIM if it exits; to prevent problems in case of a fatal error
in the ELIM, it is restarted at most once every 90 seconds. When the LIM
terminates, it sends a SIGTERM signal to the ELIM. The ELIM must exit upon
receiving this signal.

Example 1 Write an ELIM.

The following sample ELIM sets the value of myrsc resource to 2. In a real
ELIM, you would have a command to retrieve whatever value you want to
retrieve and set the value.

#!/bin/sh
while :
do
 # set the value for resource "myrsc"
 val=2

 # create an output string in the format:
 # number_indices index1_name index1_value...

 reportStr="1 myrsc $val"
 echo "$reportStr"

 # wait for 30 seconds before reporting again
 sleep 30
done

2 Test this elim by running it from the command line.
./elim

It should give you the output:

1 myrsc 2

3 Copy the ELIM to LSF_SERVERDIR and make sure it has the name elim.

4 Define the myrsc resource in lsf.shared.

In this case, we are defining the resource as Numeric because we want it
to accept numbers. The value does not increase with load.

Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION
myrsc Numeric 30 N (custom resource to trigger elim to start up)
End Resource

5 Map the myrsc resource to hosts in lsf.cluster.cluster_name. In this
case, we want this resource to reside only on hostA.

Begin ResourceMap
RESOURCENAME LOCATION
myrsc [hostA]
End ResourceMap

6 Reconfigure LSF with the commands:
❖ lsadmin reconfig
❖ badmin reconfig
Administering Platform LSF

Chapter 9
Adding Resources
7 Display the resource with the command lsload -l. You should be able
to see the new resource and value:

HOST_NAME status r15s r1m r15m ut pg io ls it tmp swp mem myrsc
hostA ok 0.4 0.4 0.4 0% 0.0 0 22 0 24M 26M 6M 2

Additional
Examples

Example code for an ELIM is included in the LSF_MISC/examples directory.
The elim.c file is an ELIM written in C. You can modify this example to collect
the load indices you want.

Debugging an ELIM
Set the parameter LSF_ELIM_DEBUG=y in lsf.cluster.cluster_name to log
all load information received by LIM from the ELIM in the LIM log file.

Set the parameter LSF_ELIM_BLOCKTIME=seconds in
lsf.cluster.cluster_name to configure how long LIM waits before
restarting the ELIM.

Use the parameter LSF_ELIM_RESTARTS=integer in
lsf.cluster.cluster_name to limit the number of times an ELIM can be
restarted.

See the Platform LSF Referencefor more details on these parameters.
Administering Platform LSF 137

Modifying a Built-In Load Index

138
Modifying a Built-In Load Index
The ELIM can return values for the built-in load indices. In this case the value
produced by the ELIM overrides the value produced by the LIM.

Considerations
◆ The ELIM must ensure that the semantics of any index it supplies are the

same as that of the corresponding index returned by the lsinfo(1)
command.

◆ The name of an external load index must not be one of the resource name
aliases: cpu, idle, logins, or swap. To override one of these indices, use
its formal name: r1m, it, ls, or swp as the ELIM output.

◆ You must configure an external load index in lsf.shared even if you are
overriding a built-in load index.

Steps
For example, some sites prefer to use /usr/tmp for temporary files.

To override the tmp load index:

1 Write a program that periodically measures the space in the /usr/tmp file
system and writes the value to standard output. For details on format, see
“Writing an ELIM” on page 135.

For example, the program writes to its standard output:

1 tmp 47.5

2 Name the program elim and store it in the LSF_SERVERDIR directory.

All default load indices are local resources, so the elim must run locally
on every machine.

3 Define the resource.

Since the name of built-in load indices is not allowed in lsf.shared,
define a custom resource to trigger the elim.

For example:

Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION
my_tmp Numeric 30 N (custom resource to trigger elim to start up)
End Resource

4 Map the resource to hosts in lsf.cluster.cluster_name.

❖ To override the tmp load index on every host, specify the keyword
default:
Begin ResourceMap
RESOURCENAME LOCATION
my_tmp [default]
End ResourceMap
Administering Platform LSF

Chapter 9
Adding Resources
❖ To override the tmp load index only on specific hosts, specify the host
names:
Begin ResourceMap
RESOURCENAME LOCATION
my_tmp ([host1][host2][host3])
End ResourceMap
Administering Platform LSF 139

Modifying a Built-In Load Index

140
 Administering Platform LSF

P A R T

III
Scheduling Policies

Contents ◆ Chapter 10, “Time Syntax and Configuration”

◆ Chapter 11, “Deadline Constraint and Exclusive Scheduling”

◆ Chapter 12, “Preemptive Scheduling”

◆ Chapter 13, “Specifying Resource Requirements”

◆ Chapter 14, “Fairshare Scheduling”

C H A P T E R

10
Time Syntax and Configuration

Contents ◆ “Specifying Time Values” on page 144

◆ “Specifying Time Windows” on page 145

◆ “Specifying Time Expressions” on page 146

◆ “Automatic Time-based Configuration” on page 147
Administering Platform LSF 143

Specifying Time Values

144
Specifying Time Values
To specify a time value, a specific point in time, specify at least the hour. Day
and minute are optional.

Time value syntax
time = hour | hour:minute | day:hour:minute

hour integer from 0 to 23, representing the hour of the day.

minute integer from 0 to 59, representing the minute of the hour.

If you do not specify the minute, LSF assumes the first minute of the hour (:00).

day integer from 0 (Sunday) to 6 (Saturday), representing the day of the week.

If you do not specify the day, LSF assumes every day. If you do specify the
day, you must also specify the minute.
Administering Platform LSF

Chapter 10
Time Syntax and Configuration
Specifying Time Windows
To specify a time window, specify two time values separated by a hyphen (-),
with no space in between.

time_window = time1-time2

Time 1 is the start of the window and time 2 is the end of the window. Both
time values must use the same syntax. There are 3 different ways to specify a
time window:

◆ hour-hour

◆ hour:minute-hour:minute

◆ day:hour:minute-day:hour:minute

Examples of time windows

Daily window To specify a daily window omit the day field from the time window. Use either
the hour-hour or hour:minute-hour:minute format. For example, to
specify a daily 8:30 a.m. to 6:30 p.m window:

8:30-18:30

Overnight window To specify an overnight window make time1 greater than time2. For
example, to specify 6:30 p.m. to 8:30 a.m. the following day:

18:30-8:30

Weekend window To specify a weekend window use the day field. For example, to specify Friday
at 6:30 p.m to Monday at 8:30 a.m.:

5:18:30-1:8:30
Administering Platform LSF 145

Specifying Time Expressions

146
Specifying Time Expressions
Time expressions use time windows to specify when to change configurations.
For more details on time windows, see “Specifying Time Windows” on
page 145.

Time expression syntax
A time expression is made up of the time keyword followed by one or more
space-separated time windows enclosed in parenthesis. Time expressions can
be combined using the &&, ||, and ! logical operators.

The syntax for a time expression is:

expression = time(time_window[time_window ...])
| expression && expression
| expression || expression
| !expression

Example Both of the following expressions specify weekends (Friday evening at 6:30
p.m. until Monday morning at 8:30 a.m.) and nights (8:00 p.m. to 8:30 a.m.
daily).

time(5:18:30-1:8:30 20:00-8:30)

time(5:18:30-1:8:30) || time(20:00-8:30)
Administering Platform LSF

Chapter 10
Time Syntax and Configuration
Automatic Time-based Configuration
Variable configuration is used to automatically change LSF configuration based
on time windows. It is supported in the following files:

◆ lsb.hosts
◆ lsb.params
◆ lsb.queues
◆ lsb.users

You define automatic configuration changes in configuration files by using if-
else constructs and time expressions. After you change the files, reconfigure
the cluster with the badmin reconfig command.

The expressions are evaluated by LSF every 10 minutes based on mbatchd start
time. When an expression evaluates true, LSF dynamically changes the
configuration based on the associated configuration statements.
Reconfiguration is done in real time without restarting mbatchd, providing
continuous system availability.

lsb.hosts example Begin Host
HOST_NAME MXJ JL/U r15s r1m pg
host1 2 2 3/5 3/5 12/20
#if time(5:16:30-1:8:30 20:00-8:30)
host2 2 2 3/5 3/5 12/20
#else
host2 1 1 2/3 2/3 10/12
#endif
host3 2 2 3/5 3/5 12/20
End Host

lsb.queues
example

Begin Queue
...
#if time(8:30-18:30)

INTERACTIVE = ONLY # interactive only during day shift
#endif
...
End Queue

Creating if-else constructs
The if-else construct can express single decisions and multi-way decisions by
including elif statements in the construct.

If-else The syntax for constructing if-else expressions is:

#if time(expression)
statement
#else
statement
#endif

The #endif part is mandatory and the #else part is optional.
Administering Platform LSF 147

Automatic Time-based Configuration

148
For syntax of a time expression, see “Specifying Time Expressions” on
page 146.

Elif The #elif expressions are evaluated in order. If any expression is true, the
associated statement is used, and this terminates the whole chain.

The #else part handles the default case where none of the other conditions
are satisfied.

When you use #elif, the #else and #endif parts are mandatory.

#if time(expression)
statement
#elif time(expression)
statement
#elif time(expression)
statement
#else
statement
#endif

Verifying configuration
Use the following LSF commands to verify configuration:

◆ bparams(1)
◆ busers(1)
◆ bhosts(1)
◆ bqueues(1)
Administering Platform LSF

C H A P T E R

11
Deadline Constraint and

Exclusive Scheduling

Contents ◆ “Deadline constraints” on page 150

◆ “Exclusive Scheduling” on page 151
Administering Platform LSF 149

Deadline Constraint Scheduling

150
Deadline Constraint Scheduling

Deadline constraints
Deadline constraints will suspend or terminate running jobs at a certain time.
There are 2 kinds of deadline constraints:

◆ A run window, specified at the queue level, suspends a running job

◆ A termination time, specified at the job level (bsub -t), terminates a
running job

Time-based resource usage limits
◆ A CPU limit, specified at job or queue level, terminates a running job when

it has used up a certain amount of CPU time.

◆ A run limit, specified at the job or queue level, terminates a running job
after it has spent a certain amount of time in the RUN state.

How deadline constraint scheduling works
If deadline constraint scheduling is enabled, LSF will not place a job that will
be interrupted by a deadline constraint before its run limit expires, or before
its CPU limit expires, if the job has no run limit. In this case, deadline constraint
scheduling could prevent a job from ever starting. If a job has neither a run
limit nor a CPU limit, deadline constraint scheduling has no effect.

Deadline constraint scheduling only affects the placement of jobs. Once a job
starts, if it is still running at the time of the deadline, it will be suspended or
terminated because of the deadline constraint or resource usage limit.

Disabling deadline constraint scheduling
Deadline constraint scheduling is enabled by default. To disable it for a queue,
set IGNORE_DEADLINE=y in lsb.queues.

Example LSF will schedule jobs in the liberal queue without observing the deadline
constraints.

Begin Queue
QUEUE_NAME = liberal
IGNORE_DEADLINE=y
End Queue
Administering Platform LSF

Chapter 11
Deadline Constraint and Exclusive Scheduling
Exclusive Scheduling

About exclusive scheduling
Exclusive scheduling gives a job exclusive use of the host that it runs on. LSF
dispatches the job to a host that has no other jobs running, and does not place
any more jobs on the host until the exclusive job is finished.

How exclusive scheduling works
When an exclusive job (bsub -x) is submitted to an exclusive queue
(EXCLUSIVE = Y in lsb.queues) and dispatched to a host, LSF locks the host
(lockU status) until the job finishes.

LSF cannot place an exclusive job unless there is a host that has no jobs
running on it.

To make sure exclusive jobs can be placed promptly, configure some hosts to
run one job at a time. Otherwise, a job could wait indefinitely for a host in a
busy cluster to become completely idle.

An exclusive job cannot preempt another job, and cannot be preempted by
another job.

Configuring an exclusive queue
To configure an exclusive queue, set EXCLUSIVE in the queue definition
(lsb.queues) to Y.

Configuring a host to run one job at a time
To make sure exclusive jobs can be placed promptly, configure some single-
processor hosts to run one job at a time. To do so, set MXJ in lsb.hosts to 1.

Submitting an exclusive job
To submit an exclusive job, use the -x option of bsub and submit the job to
an exclusive queue.
Administering Platform LSF 151

Exclusive Scheduling

152
 Administering Platform LSF

C H A P T E R

12
Preemptive Scheduling

Contents ◆ “About Preemptive Scheduling” on page 154

◆ “How Preemptive Scheduling Works” on page 155

◆ “Configuring Preemptive Scheduling” on page 157
Administering Platform LSF 153

About Preemptive Scheduling

154
About Preemptive Scheduling
Preemptive scheduling allows a pending high-priority job preempt a running
job of lower priority. LSF automatically suspends the low-priority job to make
resources available for the high-priority job. The low-priority job is resumed as
soon as additional resources become available.

Use preemptive scheduling if you have long-running low-priority jobs causing
high-priority jobs to wait an unacceptably long time.

Limitation The following types of jobs cannot be preempted:

◆ Jobs that have been forced to run with the command brun

◆ NQS jobs

◆ Backfill jobs

◆ Exclusive jobs

Preemptive and preemptable queues

Preemptive
queues

Jobs in a preemptive queue can preempt jobs in any queue of lower priority,
even if the low-priority queues are not specified as preemptable.

Preemptable
queues

Jobs in a preemptable queue can be preempted by jobs from any queue of a
higher priority, even if the high-priority queues are not specified as
preemptive.

Preemptive and preemptable jobs

Preemptive jobs Preemptive jobs are pending in a high-priority queue. Their queue must be
able to preempt the low-priority queue.

Preemptable jobs Preemptable jobs are running in a low-priority queue. Their queue must be
able to be preempted by the high-priority queue.
Administering Platform LSF

Chapter 12
Preemptive Scheduling
How Preemptive Scheduling Works
Preemptive scheduling occurs when 2 jobs compete for the same job slot. If a
high-priority job is pending, LSF can suspend a lower priority job that is
running, and then start the high-priority job using the job slot that becomes
available. For this to happen, the high-priority job must be pending in a
preemptive queue, or the low-priority job must belong to a preemptable
queue. The preempted job is resumed as soon as more resources become
available; it does not necessarily have to wait for the preempting job to finish.

Queues that can preempt others are more aggressive in scheduling jobs
because a resource that is not available to a low-priority queue might be
available (by preemption) to a high-priority queue.

By default, job slot limits are enforced based on the number of job slots taken
by running and suspended jobs. With preemptive scheduling, the suspended
jobs don’t count against certain job slot limits. This means that when one job
is suspended, another job can be started in its place.

LSF makes sure that the number of running jobs never exceeds the job slot
limits. When LSF tries to place a preemptive job, LSF considers each job slot
limit, but for certain job slot limits, LSF only counts the job slots used by
running jobs that are not preemptable. Then, if starting the preemptive job
would violate job slot limits, LSF suspends one or more low-priority jobs.

Job slot limits affected by preemptive scheduling
When you enable preemptive scheduling, you automatically affect the
following job slot limits:

◆ Total job slot limit for hosts, specified at the host level (MXJ in lsb.hosts)

◆ Total job slot limit for individual users, specified at the user level
(MAX_JOBS in lsb.users); by default, suspended jobs still count against
the limit for user groups

You can configure preemptive scheduling to affect following limits:

◆ Total job slot limit for user groups, specified at the user level (MAX_JOBS
in lsb.users); if preemptive scheduling is enabled, suspended jobs never
count against the limit for individual users

◆ Total number of jobs for users and user groups, specified at the host level
(JL/U in lsb.hosts)

◆ Per-processor job slot limit for individual users, specified at the user level
(JL/P in lsb.users)

◆ Per-processor job slot limit for user groups, specified at the user level (JL/P
in lsb.users)

Job slot limits specified at the queue level are never affected by preemptive
scheduling; they are always enforced for both running and suspended jobs.
Administering Platform LSF 155

How Preemptive Scheduling Works

156
Preemption of multiple job slots
If multiple resources are required, LSF can preempt multiple jobs, until
sufficient resources are available. For example, one or more jobs might be
preempted for a job that needs multiple job slots.
Administering Platform LSF

Chapter 12
Preemptive Scheduling
Configuring Preemptive Scheduling
To configure preemptive scheduling, make at least one queue in the cluster
preemptive (not the lowest-priority queue) or preemptable (not the highest-
priority queue).

To make a queue preemptive or preemptable, set PREEMPTION in the queue
definition (lsb.queues) to PREEMPTIVE or PREEMPTABLE. A queue can be
both: its jobs can always preempt jobs in lower priority queues, and can always
be preempted by jobs from higher priority queues.

Syntax PREEMPTION = PREEMPTIVE[[queue_name...]] PREEMPTABLE[[queue_name...]]

When you specify a list of queues, you must enclose the list in one set of
square brackets.

PREEMPTIVE[[queue_name ...]]
Defines a preemptive queue. Jobs in this queue can preempt jobs from
specified lower priority queues only, or from all lower priority queues by
default (if the parameter is specified with no queue names).

If you specify a list of lower-priority queues, you must enclose the list in one
set of square brackets.

PREEMPTABLE [[queue_name ...]]
Defines a preemptable queue. Jobs in this queue can be preempted by jobs
from specified higher-priority queues, or from all higher-priority queues by
default (if the parameter is specified with no queue names), even if the higher-
priority queues are not preemptive.

If you specify a list of higher-priority queues, you must enclose the list in one
set of square brackets.

Example In these examples, assume Queue 1 has highest priority and Queue 4 the
lowest.

◆ If the following settings are in lsb.queues:
QUEUE_NAME=Queue1
PREEMPTION=PREEMPTIVE

Queue 1 is preemptive, so it can preempt jobs in all lower-priority queues
(Queues 2, 3 and 4).

◆ If the following settings are in lsb.queues:
QUEUE_NAME=Queue1
PREEMPTION=PREEMPTIVE[Queue3 Queue4]

Queue 1 is preemptive, but can only preempt jobs in Queues 3 and 4, not
Queue 2.

◆ If the following settings are in lsb.queues:
QUEUE_NAME=Queue3
PREEMPTION=PREEMPTIVE PREEMPTABLE
Administering Platform LSF 157

Configuring Preemptive Scheduling

158
Queue 3 is preemptive and preemptable, so it can preempt jobs in all
lower-priority queues (Queue 4), and its jobs can be preempted by all
higher-priority queues (Queues 1 and 2).

Configuring additional job slot limits for preemptive scheduling
The following job slot limits are always affected by preemptive scheduling:

◆ Total job slot limit for hosts, specified at the host level (MXJ in lsb.hosts)

◆ Total job slot limit for individual users, specified at the user level
(MAX_JOBS in lsb.users); by default, suspended jobs still count against
the limit for user groups

To configure additional job slot limits to be affected by preemptive scheduling,
set PREEMPT_FOR in lsb.params, and use one or more of the following
keywords to indicate that suspended jobs don’t count against that job slot limit:

◆ GROUP_MAX—total job slot limit for user groups, specified at the user
level (MAX_JOBS in lsb.users); if preemptive scheduling is enabled,
suspended jobs never count against the limit for individual users

◆ HOST_JLU—total number of jobs for users and user groups, specified at
the host level (JL/U in lsb.hosts)

◆ USER_JLP—user-processor job slot limit for individual users, specified at
the user level (JL/P in lsb.users)

◆ GROUP_JLP—per-processor job slot limit for user groups, specified at the
user level (JL/P in lsb.users)

Job slot limits specified at the queue level are never affected by preemptive
scheduling.
Administering Platform LSF

C H A P T E R

13
Specifying Resource

Requirements

Contents ◆ “About Resource Requirements” on page 160

◆ “Queue-Level Resource Requirements” on page 161

◆ “Job-Level Resource Requirements” on page 163

◆ “About Resource Requirement Strings” on page 164

◆ “Selection String” on page 165

◆ “Order String” on page 167

◆ “Usage String” on page 168

◆ “Span String” on page 170

◆ “Same String” on page 171
Administering Platform LSF 159

About Resource Requirements

160
About Resource Requirements
Resource requirements define which hosts a job can run on. Each job has its
resource requirements. Hosts that match the resource requirements are the
candidate hosts. When LSF schedules a job, it uses the load index values of all
the candidate hosts. The load values for each host are compared to the
scheduling conditions. Jobs are only dispatched to a host if all load values are
within the scheduling thresholds.

By default, if a job has no resource requirements, LSF places it on a host of the
same type as the submission host (i.e., type==any). However, if a job has
string or Boolean resource requirements specified and the host type has not
been specified, LSF places the job on any host (i.e., type==any) that satisfies
the resource requirements.

To override the LSF defaults, specify resource requirements explicity. Resource
requirements can be set for queues, for individual applications, or for
individual jobs.

To best place a job with optimized performance, resource requirements can be
specified for each application. This way, you do not have to specify resource
requirements every time you submit a job. The LSF administrator may have
already configured the resource requirements for your jobs, or you can put
your executable name together with its resource requirements into your
personal remote task list.

The bsub command automatically uses the resource requirements of the job
from the remote task lists.

A resource requirement is an expression that contains resource names and
operators.

Resource requirements at multiple levels
If you specify resource requirements at the job level that are already defined
in the queue, the host must satisfy both requirements to be eligible for running
the job.
Administering Platform LSF

Chapter 13
Specifying Resource Requirements
Queue-Level Resource Requirements
Each queue can define resource requirements that will be applied to all the
jobs in the queue. The queue-level resource requirements can also serve as job
scheduling conditions shared by all jobs in the queue.

When resource requirements are specified for a queue, and no job-level
resource requirement is specified, the queue-level resource requirements
become the default resource requirements for the job.

If job-level resource requirements are specified together with queue-level
resource requirements, then a host must satisfy the selection string in both
requirements to be eligible for running the job. However, the order and span
sections defined at the queue level are ignored if different order and span
requirements are specified at the job level.

Syntax The condition for dispatching a job to a host can be specified through the
queue-level RES_REQ parameter in the queue definition in lsb.queues.

Examples
RES_REQ=select[((type==ALPHA && r1m < 2.0)||(type==HPPA && r1m < 1.0))]

This will allow a queue, which contains ALPHA and HPPA hosts, to have
different thresholds for different types of hosts.

RES_REQ=select[((hname==hostA && mem > 50)||(hname==hostB && mem > 100))]

Using the hname resource in the resource requirement string allows you to set
up different conditions for different hosts in the same queue.

Load thresholds
Load thresholds can be configured by your LSF administrator to schedule jobs
in queues. Load thresholds specify a load index value. There are two types of
load thresholds:

loadSched The scheduling threshold which determines the load condition for dispatching
pending jobs. If a host’s load is beyond any defined loadSched, a job will not
be started on the host. This threshold is also used as the condition for resuming
suspended jobs.

loadStop The suspending condition that determines when running jobs should be
suspended.

Thresholds can be configured for each queue, for each host, or a combination
of both. To schedule a job on a host, the load levels on that host must satisfy
both the thresholds configured for that host and the thresholds for the queue
from which the job is being dispatched.
Administering Platform LSF 161

Queue-Level Resource Requirements

162
The value of a load index may either increase or decrease with load,
depending on the meaning of the specific load index. Therefore, when
comparing the host load conditions with the threshold values, you need to use
either greater than (>) or less than (<), depending on the load index.

See Chapter 26, “Load Thresholds” for information about suspending
conditions and configuring load thresholds.
Administering Platform LSF

Chapter 13
Specifying Resource Requirements
Job-Level Resource Requirements
Each job can specify resource requirements. Job-level resource requirements
override any resource requirements specified in the remote task list.

In some cases, the queue specification sets an upper or lower bound on a
resource. If you attempt to exceed that bound, your job will be rejected.

Syntax To specify resource requirements for your job, use bsub -R and specify the
resource requirement string as usual.

Example % bsub -R "swp > 15 && hpux order[cpu]" myjob

This runs the job called myjob on an HP-UX host that is lightly loaded (CPU
utilization) and has at least 15 MB of swap memory available.
Administering Platform LSF 163

About Resource Requirement Strings

164
About Resource Requirement Strings
Most LSF commands accept a -R res_req argument to specify resource
requirements. The exact behaviour depends on the command. For example,
specifying a resource requirement for the lsload command displays the load
levels for all hosts that have the requested resources.

Specifying resource requirements for the lsrun command causes LSF to select
the best host out of the set of hosts that have the requested resources.

A resource requirement string describes the resources a job needs. LSF uses
resource requirements to select hosts for remote execution and job execution.

A resource requirement string is divided into the following sections:

◆ A selection section (select). The selection section specifies the criteria for
selecting hosts from the system.

◆ An ordering section (order). The ordering section indicates how the hosts
that meet the selection criteria should be sorted.

◆ A resource usage section (rusage). The resource usage section specifies
the expected resource consumption of the task.

◆ A job spanning section (span). The job spanning section indicates if a
parallel batch job should span across multiple hosts.

◆ A same resource section (same). The same section indicates that all
processes of a parallel job must run on the same type of host.

Depending on the command, one or more of these sections may apply. For
example:

◆ bsub uses all four sections

◆ lshosts only selects hosts, but does not order them

◆ lsload selects and orders hosts

◆ lsplace uses the information in select, order, and rusage sections to
select an appropriate host for a task

◆ lsloadadj uses the rusage section to determine how the load
information should be adjusted on a host

Syntax select[selection_string] order[order_string] rusage[usage_string]
span[span_string] same[same_string]

The square brackets must be typed as shown.

The section names are select, order, rusage, span, and same. Sections that
do not apply for a command are ignored.

If no section name is given, then the entire string is treated as a selection string.
The select keyword may be omitted if the selection string is the first string in
the resource requirement.

Each section has a different syntax.
Administering Platform LSF

Chapter 13
Specifying Resource Requirements
Selection String
The selection string specifies the characteristics a host must have to match the
resource requirement. It is a logical expression built from a set of resource
names. The selection string is evaluated for each host; if the result is non-zero,
then that host is selected.

Syntax The selection string can combine resource names with logical and arithmetic
operators. Non-zero arithmetic values are treated as logical TRUE, and zero (0)
as logical FALSE. Boolean resources (for example, server to denote LSF server
hosts) have a value of one (1) if they are defined for a host, and zero (0) if they
are not defined for the host.

The resource names swap, idle, logins, and cpu are accepted as aliases for
swp, it, ls, and r1m respectively.

For ut, specify the percentage CPU utilization as an integer between 0-100.

For the string resources type and model, the special value any selects any
value and local selects the same value as that of the local host. For example,
type==local selects hosts of the same type as the host submitting the job. If
a job can run on any type of host, include type==any in the resource
requirements.

If no type is specified, the default depends on the command. For bsub,
lsplace, lsrun, and lsgrun the default is type==local unless a string or
Boolean resource is specified, in which case it is type==any. For lshosts,
lsload, lsmon and lslogin the default is type==any.

Operators These operators can be used in selection strings. The operators are listed in
order of decreasing precedence.

Syntax Meaning

-a
!a

Negative of a
Logical not: 1 if a==0, 0 otherwise

a * b
a / b

Multiply a and b
Divide a by b

a + b
a - b

Add a and b
Subtract b from a

a > b
a < b
a >= b
a <= b

1 if a is greater than b, 0 otherwise
1 if a is less than b, 0 otherwise
1 if a is greater than or equal to b, 0 otherwise
1 if a is less than or equal to b, 0 otherwise

a == b
a != b

1 if a is equal to b, 0 otherwise
1 if a is not equal to b, 0 otherwise

a && b Logical AND: 1 if both a and b are non-zero, 0 otherwise

a || b Logical OR: 1 if either a or b is non-zero, 0 otherwise
Administering Platform LSF 165

Selection String

166
Examples select[(swp > 50 && type == MIPS) || (swp > 35 && type == ALPHA)]

select[((2*r15s + 3*r1m + r15m) / 6 < 1.0) && !fs && (cpuf > 4.0)]

Specifying shared resources with the keyword “defined”
A shared resource may be used in the resource requirement string of any LSF
command. For example when submitting an LSF job which requires a certain
amount of shared scratch space, you might submit the job as follows:

% bsub -R "avail_scratch > 200 && swap > 50" myjob

The above assumes that all hosts in the cluster have access to the shared
scratch space. The job will only be scheduled if the value of the
"avail_scratch" resource is more than 200 MB and will go to a host with at
least 50 MB of available swap space.

It is possible for a system to be configured so that only some hosts within the
LSF cluster have access to the scratch space. In order to exclude hosts which
cannot access a shared resource, the defined(resource_name) function
must be specified in the resource requirement string.

For example:

% bsub -R "defined(avail_scratch) && avail_scratch > 100 && swap >
100" myjob

would exclude any hosts which cannot access the scratch resource. The LSF
administrator configures which hosts do and do not have access to a particular
shared resource.
Administering Platform LSF

Chapter 13
Specifying Resource Requirements
Order String
The order string allows the selected hosts to be sorted according to the values
of resources. The values of r15s, r1m, and r15m used for sorting are the
normalized load indices returned by lsload -N.

The order string is used for host sorting and selection. The ordering begins
with the rightmost index in the order string and proceeds from right to left. The
hosts are sorted into order based on each load index, and if more hosts are
available than were requested, the LIM drops the least desirable hosts
according to that index. The remaining hosts are then sorted by the next index.

After the hosts are sorted by the leftmost index in the order string, the final
phase of sorting orders the hosts according to their status, with hosts that are
currently not available for load sharing (that is, not in the ok state) listed at the
end.

Because the hosts are sorted again for each load index, only the host status
and the leftmost index in the order string actually affect the order in which
hosts are listed. The other indices are only used to drop undesirable hosts from
the list.

When sorting is done on each index, the direction in which the hosts are sorted
(increasing vs decreasing values) is determined by the default order returned
by lsinfo for that index. This direction is chosen such that after sorting, by
default, the hosts are ordered from best to worst on that index.

Syntax [-]resource_name [:[-]resource_name]...

You can specify any built-in or external load index.

When an index name is preceded by a minus sign ‘-’, the sorting order is
reversed so that hosts are ordered from worst to best on that index.

Default The default sorting order is r15s:pg (except for lslogin(1): ls:r1m).

Example swp:r1m:tmp:r15s
Administering Platform LSF 167

Usage String

168
Usage String
This string defines the expected resource usage of the task. It is used to specify
resource reservations for jobs, or for mapping tasks onto hosts and adjusting
the load when running interactive jobs.

By default, no resources are reserved.

Batch jobs
The resource usage (rusage) section can be specified at the job level or with
the queue configuration parameter RES_REQ.

When both job-level and queue-level rusage sections are defined, the rusage
section defined for the job overrides the rusage section defined in the queue.
The two rusage definitions are merged, with the job-level rusage taking
precedence.

Syntax
load_index=value [:load_index=value]... [:duration=minutes[m] | :duration=hoursh |
:duration=secondss] [:decay=0 | :decay=1]

Load index Internal and external load indices are considered in the resource usage string.
The resource value represents the initial reserved amount of the resource.

Duration The duration is the time period within which the specified resources should be
reserved. Specify an duration equal to or greater than the ELIM updating
interval and MBD_SLEEP_TIME.

◆ If the value is followed by the letter s, m, or h, the specified time is
measured in seconds, minutes, or hours respectively.

◆ By default, duration is specified in minutes.

For example, duration=60 and duration=1h both specify a duration of 1
hour.

Decay The decay value indicates how the reserved amount should decrease over the
duration.

◆ A value of 1 indicates that system should linearly decrease the amount
reserved over the duration.

◆ A value of 0 causes the total amount to be reserved for the entire duration.

Values other than 0 or 1 are unsupported. If duration is not specified, decay
value is ignored.

Default If a resource or its value is not specified, the default is not to reserve that
resource. If duration is not specified, the default is to reserve the total amount
for the lifetime of the job. The default decay value is 0.
Administering Platform LSF

Chapter 13
Specifying Resource Requirements
Example rusage[mem=50:duration=100:decay=1]

This example indicates that 50 MB memory should be reserved for the job. As
the job runs, the amount reserved will decrease at approximately 0.5 MB per
minute until the 100 minutes is up.

Non-batch environments
Resource reservation is only available for batch jobs. If you run jobs using only
LSF Base, such as through lsrun, LIM uses resource usage to determine the
placement of jobs. Resource usage requests are used to temporarily increase
the load so that a host is not overloaded. When LIM makes a placement advice,
external load indices are not considered in the resource usage string. In this
case, the syntax of the resource usage string is

res[=value]:res[=value]: ... :res[=value]

The res is one of the resources whose value is returned by the lsload
command.

rusage[r1m=0.5:mem=20:swp=40]

The above example indicates that the task is expected to increase the 1-minute
run queue length by 0.5, consume 20 MB of memory and 40 MB of swap space.

If no value is specified, the task is assumed to be intensive in using that
resource. In this case no more than one task will be assigned to a host
regardless of how many CPUs it has.

The default resource usage for a task is r15s=1.0:r1m=1.0:r15m=1.0. This
indicates a CPU-intensive task which consumes few other resources.
Administering Platform LSF 169

Span String

170
Span String
This string specifies the locality of a parallel job. Currently only the following
two cases are supported:

span[hosts=1]

This indicates that all the processors allocated to this job must be on the same
host.

span[ptile=n]

This indicates that only n processors on each host should be allocated to the
job regardless of how many processors the host possesses.

If span is omitted, LSF will allocate the required processors for the job from the
available set of processors.
Administering Platform LSF

Chapter 13
Specifying Resource Requirements
Same String

You must have the parallel batch job scheduler plugin installed in order to use the
same string.

Parallel jobs run on multiple hosts. If your cluster has heterogeneous hosts,
some processes from a parallel job may for example, run on Solaris and some
on SGI IRIX. However, for performance reasons you may want all processes of
a job to run on the same type of host instead of having some processes run on
one type of host and others on another type of host.

The same string specifies that all processes of a parallel job must run on hosts
with the same resource.

You can specify the same string:

◆ At the job level in the resource requirement string of:

❖ bsub or xbsub
❖ bmod

◆ At the queue-level in lsb.queues in the RES_REQ parameter.

When both queue-level and job-level same sections are defined, LSF combines
both requirements to allocate processors.

Syntax resource_name[:resource_name]...

You can specify any static resource.

When you specify for example, resource1:resource2, if hosts always have
both resources, the string is interpreted as:

◆ Allocate processors only on hosts that have the same value for resource1
and the same value for resource2

If hosts do not always have both resources, it is interpreted as:

◆ Allocate processors either on hosts that have the same value for
resource1, or on hosts that have the same value for resource2, or on
hosts that have the same value for both resource1 and resource2

Examples % bsub -n 4 -R"select[type==SGI6 || type==SOL7] same[type]" myjob

Run all parallel processes on the same host type. Allocate 4 processors on the
same host type—either SGI IRIX, or Solaris 7, but not both.

% bsub -n 6 -R"select[type==any] same[type:model]" myjob

Run all parallel processes on the same host type and model. Allocate 6
processors on any host type or model as long as all the processors are on the
same host type and model.
Administering Platform LSF 171

Same String

172
 Administering Platform LSF

C H A P T E R

14
Fairshare Scheduling

To configure any kind of fairshare scheduling, you should understand the
following concepts:

◆ User share assignments

◆ Dynamic share priority

◆ Job dispatch order

You can configure fairshare at either host level or queue level, whichever is
best for you. If you require more control, you can implement hierarchical
fairshare. You can also set some additional restrictions when you submit a job.

To get ideas about how to use fairshare scheduling to do different things,
“Ways to Configure Fairshare” on page 197.

Contents ◆ Basic Concepts

❖ “About Fairshare Scheduling” on page 174

❖ “User Share Assignments” on page 176

❖ “Dynamic User Priority” on page 178

❖ “How Fairshare Affects Job Dispatch Order” on page 184

◆ Host-level Fairshare

❖ “Host Partition Fairshare” on page 185

◆ Queue-level Fairshare

❖ “Queue-Level Fairshare” on page 187

❖ “Cross-queue Fairshare” on page 188

◆ Advanced Topics

❖ “Using Historical and Committed Run Time” on page 180

❖ “Hierarchical Fairshare” on page 192

❖ “Users Affected by Multiple Fairshare Policies” on page 195

❖ “Ways to Configure Fairshare” on page 197
Administering Platform LSF 173

About Fairshare Scheduling

174
About Fairshare Scheduling
Fairshare scheduling divides the processing power of the LSF cluster among
users and groups to provide fair access to resources.

By default, LSF considers jobs for dispatch in the same order as they appear in
the queue (which is not necessarily the order in which they are submitted to
the queue). This is called first-come, first-served (FCFS) scheduling.

If your cluster has many users competing for limited resources, the FCFS policy
might not be enough. For example, one user could submit many long jobs at
once and monopolize the cluster’s resources for a long time, while other users
submit urgent jobs that must wait in queues until all the first user’s jobs are all
done. To prevent this, use fairshare scheduling to control how resources
should be shared by competing users.

Fairshare is not necessarily equal share: you can assign a higher priority to the
most important users. If there are two users competing for resources, you can:

◆ Give all the resources to the most important user

◆ Share the resources so the most important user gets the most resources

◆ Share the resources so that all users have equal importance

Queue-level vs. host partition fairshare
You can configure fairshare at either the queue level or the host level.
However, these types of fairshare scheduling are mutually exclusive. You
cannot configure queue-level fairshare and host partition fairshare in the same
cluster.

If you want a user’s priority in one queue to depend on their activity in another
queue, you must use cross-queue fairshare or host-level fairshare.

Fairshare policies
A fairshare policy defines the order in which LSF attempts to place jobs that
are in a queue or a host partition. You can have multiple fairshare policies in
a cluster, one for every different queue or host partition. You can also configure
some queues or host partitions with fairshare scheduling, and leave the rest
using FCFS scheduling.
Administering Platform LSF

Chapter 14
Fairshare Scheduling
How fairshare scheduling works
Each fairshare policy assigns a fixed number of shares to each user or group.
These shares represent a fraction of the resources that are available in the
cluster. The most important users or groups are the ones with the most shares.
Users who have no shares cannot run jobs in the queue or host partition.

A user’s dynamic priority depends on their share assignment, the dynamic
priority formula, and the resources their jobs have already consumed.

The order of jobs in the queue is secondary. The most important thing is the
dynamic priority of the user who submitted the job. When fairshare scheduling
is used, LSF tries to place the first job in the queue that belongs to the user with
the highest dynamic priority.
Administering Platform LSF 175

User Share Assignments

176
User Share Assignments
Both queue-level and host partition fairshare use the following syntax to define
how shares are assigned to users or user groups.

Syntax [user, number_shares]

Enclose each user share assignment in square brackets, as shown. Separate
multiple share assignments with a space between each set of square brackets.

◆ user

Specify users of the queue or host partition. You can assign the shares:

❖ to a single user (specify user_name)

❖ to users in a group, individually (specify group_name@) or collectively
(specify group_name)

❖ to users not included in any other share assignment, individually
(specify the keyword default) or collectively (specify the keyword
others)

By default, when resources are assigned collectively to a group, the group
members compete for the resources according to FCFS scheduling. You can
use hierarchical fairshare to further divide the shares among the group
members.

When resources are assigned to members of a group individually, the share
assignment is recursive. Members of the group and of all subgroups always
compete for the resources according to FCFS scheduling, regardless of
hierarchical fairshare policies.

◆ number_shares

Specify a positive integer representing the number of shares of cluster
resources assigned to the user.

The number of shares assigned to each user is only meaningful when you
compare it to the shares assigned to other users, or to the total number of
shares. The total number of shares is just the sum of all the shares assigned
in each share assignment.

Examples ◆ [User1, 1] [GroupB, 1]

Assigns 2 shares: 1 to User1, and 1 to be shared by the users in GroupB.
Each user in GroupB has equal importance. User1 is as important as all the
users in GroupB put together.

In this example, it doesn’t matter if the number of shares is 1, 6 or 600. As
long as User1 and GroupB are both assigned the same number of shares,
the relationship stays the same.

◆ [User1, 10] [GroupB@, 1]

If GroupB contains 10 users, assigns 20 shares in total: 10 to User1, and 1
to each user in GroupB. Each user in GroupB has equal importance. User1
is ten times as important as any user in GroupB.
Administering Platform LSF

Chapter 14
Fairshare Scheduling
◆ [User1, 10] [User2, 9] [others, 8]

Assigns 27 shares: 10 to User1, 9 to User2, and 8 to the remaining users,
as a group. User1 is slightly more important than User2. Each of the
remaining users has equal importance.

❖ If there are 3 users in total, the single remaining user has all 8 shares,
and is almost as important as User1 and User2.

❖ If there are 12 users in total, then 10 users compete for those 8 shares,
and each of them is significantly less important than User1 and User2.

◆ [User1, 10] [User2, 6] [default, 4]

The relative percentage of shares held by a user will change, depending
on the number of users who are granted shares by default.

❖ If there are 3 users in total, assigns 20 shares: 10 to User1, 6 to User2,
and 4 to the remaining user. User1 has half of the available resources
(5 shares out of 10).

❖ If there are 12 users in total, assigns 56 shares: 10 to User1, 6 to User2,
and 4 to each of the remaining 10 users. User1 has about a fifth of the
available resources (5 shares out of 56).
Administering Platform LSF 177

Dynamic User Priority

178
Dynamic User Priority

About dynamic user priority
LSF calculates a dynamic user priority for individual users or for a group,
depending on how the shares are assigned. The priority is called dynamic
because it changes as soon as any variable in formula changes. By default, a
user’s dynamic priority gradually decreases after a job starts, and the dynamic
priority immediately increases when the job finishes.

How LSF calculates dynamic priority
By default, LSF calculates the dynamic priority based on the following
information about each user:

◆ Number of shares assigned to the user

◆ Resources used by jobs belonging to the user:

❖ Number of job slots reserved and in use

❖ Run time of running jobs

❖ Cumulative actual CPU time (not normalized), adjusted so that recently
used CPU time is weighted more heavily than CPU time used in the
distant past

If you enable additional functionality, the formula can also involve additional
resources used by jobs belonging to the user:

◆ Historical run time of finished jobs

◆ Committed run time, specified at job submission with the -W option of
bsub, or in the queue with the RUN_LIMIT parameter in lsb.queues

How LSF measures fairshare resource usage
LSF measures resource usage differently, depending on the type of fairshare:

◆ For queue-level fairshare, LSF measures the resource consumption of all
the user’s jobs in the queue. This means a user’s dynamic priority can be
different in every queue.

◆ For host partition fairshare, LSF measures resource consumption for all the
user’s jobs that run on hosts in the host partition. This means a user’s
dynamic priority is the same in every queue that uses hosts in the same
partition.
Administering Platform LSF

Chapter 14
Fairshare Scheduling
Default dynamic priority formula
By default, LSF calculates dynamic priority according to the following formula:

dynamic priority = number_shares / (cpu_time * CPU_TIME_FACTOR +
run_time * RUN_TIME_FACTOR + (1 + job_slots) * RUN_JOB_FACTOR)

The maximum value of dynamic user priority is 100 times the number of user
shares (if the denominator in the calculation is less than 0.01, LSF rounds up
to 0.01).

For cpu_time, run_time, and job_slots, LSF uses the total resource consumption
of all the jobs in the queue or host partition that belong to the user or group.

number_shares The number of shares assigned to the user.

cpu_time The cumulative CPU time used by the user (measured in hours). LSF calculates
the cumulative CPU time using the actual (not normalized) CPU time and a
decay factor such that 1 hour of recently-used CPU time decays to 0.1 hours
after an interval of time specified by HIST_HOURS in lsb.params (5 hours by
default).

run_time The total run time of running jobs (measured in hours).

job_slots The number of job slots reserved and in use.

Configuring the default dynamic priority
You can give additional weight to the various factors in the priority calculation
by setting the following parameters in lsb.params.

◆ CPU_TIME_FACTOR

◆ RUN_TIME_FACTOR

◆ RUN_JOB_FACTOR

◆ HIST_HOURS

If you modify the parameters used in the dynamic priority formula, it affects
every fairshare policy in the cluster.

CPU_TIME_FACTOR
The CPU time weighting factor.

Default: 0.7

RUN_TIME_FACTOR
The run time weighting factor.

Default: 0.7

RUN_JOB_FACTOR The job slots weighting factor.

Default: 3
Administering Platform LSF 179

Using Historical and Committed Run Time

180
Using Historical and Committed Run Time
By default, as a job is running, the dynamic priority decreases gradually until
the job has finished running, then increases immediately when the job finishes.

In some cases this can interfere with fairshare scheduling if two users who
have the same priority and the same number of shares submit jobs at the same
time.

To avoid these problems, you can modify the dynamic priority calculation by
using either or both of the following weighting factors:

◆ Historical run time decay

◆ Committed run time

Historical run time decay
By default, historical run time does not affect the dynamic priority. You can
configure LSF so that the user’s dynamic priority increases gradually after a job
finishes. After a job is finished, its run time is saved as the historical run time
of the job and the value can be used in calculating the dynamic priority, the
same way LSF considers historical CPU time in calculating priority. LSF applies
a decaying algorithm to the historical run time to gradually increase the
dynamic priority over time after a job finishes.

Configuring Specify ENABLE_HST_RUN_TIME=Y in lsb.params. Historical run time is
added to the calculation of the dynamic priority so that the formula becomes
the following:

dynamic priority = number_shares / (cpu_time * CPU_TIME_FACTOR +
(historical_run_time + run_time) * RUN_TIME_FACTOR + (1 + job_slots) *
RUN_JOB_FACTOR)

◆ historical_run_time

The historical run time (measured in hours) of finished jobs accumulated
in the user’s share account file. LSF calculates the historical run time using
the actual run time of finished jobs and a decay factor such that 1 hour of
recently-used run time decays to 0.1 hours after an interval of time
specified by HIST_HOURS in lsb.params (5 hours by default).

How mbatchd reconfiguration and restart affects historical run time
After restarting or reconfiguring mbatchd, the historical run time of finished
jobs might be different, since it includes jobs that may have been cleaned from
mbatchd before the restart. mbatchd restart only reads recently finished jobs
from lsb.events, according to the value of CLEAN_PERIOD in lsb.params.
Any jobs cleaned before restart are lost and are not included in the new
calculation of the dynamic priority.
Administering Platform LSF

Chapter 14
Fairshare Scheduling
Example The following fairshare parameters are configured in lsb.params:

CPU_TIME_FACTOR = 0
RUN_JOB_FACTOR = 0
RUN_TIME_FACTOR = 1

Note that in this configuration, only run time is considered in the calculation
of dynamic priority. This simplifies the formula to the following:

dynamic priority = number_shares / (run_time * RUN_TIME_FACTOR)

Without the historical run time, the dynamic priority increases suddenly as
soon as the job finishes running because the run time becomes zero, which
gives no chance for jobs pending for other users to start.

When historical run time is included in the priority calculation, the formula
becomes:

dynamic priority = number_shares / (historical_run_time + run_time) *
RUN_TIME_FACTOR)

Now the dynamic priority increases gradually as the historical run time decays
over time.

Committed run time weighting factor
Committed run time is the run time requested at job submission with the -W
option of bsub, or in the queue configuration with the RUN_LIMIT parameter.
By default, committed run time does not affect the dynamic priority.

While the job is running, the actual run time is subtracted from the committed
run time. The user’s dynamic priority decreases immediately to its lowest
expected value, and is maintained at that value until the job finishes. Job run
time is accumulated as usual, and historical run time, if any, is decayed.

When the job finishes, the committed run time is set to zero and the actual run
time is added to the historical run time for future use. The dynamic priority
increases gradually until it reaches its maximum value.

Providing a weighting factor in the run time portion of the dynamic priority
calculation prevents a “job dispatching burst” where one user monopolizes job
slots because of the latency in computing run time.

Configuring Set a value for the COMMITTED_RUN_TIME_FACTOR parameter in
lsb.params. You should also specify a RUN_TIME_FACTOR, to prevent the
user’s dynamic priority from increasing as the run time increases.

If you have also enabled the use of historical run time, the dynamic priority is
calculated according to the following formula:

dynamic priority = number_shares / (cpu_time * CPU_TIME_FACTOR +
(historical_run_time + run_time) * RUN_TIME_FACTOR +
(committed_run_time - run_time) * COMMITTED_RUN_TIME_FACTOR + (1 +
job_slots) * RUN_JOB_FACTOR)
Administering Platform LSF 181

Using Historical and Committed Run Time

182
◆ committed_run_time

The run time requested at job submission with the -W option of bsub, or
in the queue configuration with the RUN_LIMIT parameter. This calculation
measures the committed run time in hours.

In the calculation of a user’s dynamic priority,
COMMITTED_RUN_TIME_FACTOR determines the relative importance of the
committed run time in the calculation. If the -W option of bsub is not specified
at job submission and a RUN_LIMIT has not been set for the queue, the
committed run time is not considered.

COMMITTED_RUN_TIME_FACTOR can be any positive value between 0.0 and
1.0. The default value is 0.0. As the value of
COMMITTED_RUN_TIME_FACTOR approaches 1.0, more weight is given to
the committed run time in the calculation of the dynamic priority.

Limitation If you use queue-level fairshare, and a running job has a committed run time,
you should not switch that job to or from a fairshare queue (using bswitch).
The fairshare calculations will not be correct.

Run time displayed by bqueues and bhpart
The run time displayed by bqueues and bhpart is the sum of the actual,
accumulated run time and the historical run time, but does not include the
committed run time.

Example The following fairshare parameters are configured in lsb.params:

CPU_TIME_FACTOR = 0
RUN_JOB_FACTOR = 0
RUN_TIME_FACTOR = 1
COMMITTED_RUN_TIME_FACTOR = 1
Administering Platform LSF

Chapter 14
Fairshare Scheduling
Without a committed run time factor, dynamic priority for the job owner drops
gradually while a job is running:

When a committed run time factor is included in the priority calculation, the
dynamic priority drops as soon as the job is dispatched, rather than gradually
dropping as the job runs:
Administering Platform LSF 183

How Fairshare Affects Job Dispatch Order

184
How Fairshare Affects Job Dispatch Order
Within a queue, jobs are dispatched according to the queue’s scheduling
policy.

◆ For FCFS queues, the dispatch order depends on the order of jobs in the
queue (which depends on job priority and submission time, and can also
be modified by the job owner).

◆ For fairshare queues, the dispatch order depends on dynamic share
priority, then order of jobs in the queue.

A user’s priority gets higher when they use less than their fair share of the
cluster’s resources. When a user has the highest priority, LSF considers one of
their jobs first, even if other users are ahead of them in the queue.

If there are only one user’s jobs pending, and you do not use hierarchical
fairshare, then there is no resource contention between users, so the fairshare
policies have no effect and jobs are dispatched as usual.

Job dispatch order among queues of equivalent priority
Among queues of equal priority, the order of dispatch depends on which
queue has a job submitted to it first. The first job submitted to either queue
reserves the first dispatch place for a job in that queue.

Jobs from FCFS queues reserve additional dispatch places, according to the
order in which jobs were submitted to the queues. Jobs in a fairshare queue
are always considered as a group, so if one job from a fairshare queue has
reserved a dispatch place, additional jobs from that queue do not reserve any
more places.

Example In a cluster, queues A and B have equal priority. Jobs are submitted to each
queue in this order: A B A A B.

◆ If both queues are FCFS queues, order of dispatch is A B A A B (same as
order of submission).

◆ If both queues are fairshare queues, order of dispatch is AAA BB (depends
on the order in which the first job from each queue was submitted).

◆ If A is fairshare and B is FCFS, order of dispatch is AAA B B (position of all
jobs from the fairshare queue depends on the position of the first job
submitted from the fairshare queue)

◆ If B is fairshare and A is FCFS, order of dispatch is A BB A A (position of
all jobs from the fairshare queue depends on the position of the first job
submitted from the fairshare queue).

The first job submitted always determines which queue goes first, but it’s not
necessarily that job that goes first.
Administering Platform LSF

Chapter 14
Fairshare Scheduling
Host Partition Fairshare

About host partition fairshare
Fairshare policy configured at the host level handles resource contention
across multiple queues.

You can define a different fairshare policy for every host partition. If multiple
queues use the host partition, a user has the same priority across multiple
queues.

To run a job on a host that has fairshare, users must have a share assignment
(USER_SHARES in the HostPartition section of lsb.hosts). Even cluster
administrators cannot submit jobs to a fairshare host if they do not have a share
assignment.

Viewing host partition information
Use bhpart to view the following information:

◆ Host partitions configured in your cluster

◆ Number of shares (for each user or group in a host partition)

◆ Dynamic share priority (for each user or group in a host partition)

◆ Number of started jobs

◆ Number of reserved jobs

◆ CPU time, in seconds (cumulative CPU time for all members of the group,
recursively)

◆ Run time, in seconds (historical and actual run time for all members of the
group, recursively)

Example % bhpart Partition1

HOST_PARTITION_NAME: Partition1
HOSTS: hostA hostB hostC

SHARE_INFO_FOR: Partition1/
USER/GROUP SHARES PRIORITY STARTED RESERVED CPU_TIME RUN_TIME
group1 100 5.440 5 0 200.0 1324
Administering Platform LSF 185

Host Partition Fairshare

186
Configuring host partition fairshare scheduling
To configure host partition fairshare, define a host partition in lsb.hosts.

Use the following format.

Begin HostPartition
HPART_NAME = Partition1
HOSTS = hostA hostB ~hostC
USER_SHARES = [groupA@, 3] [groupB, 7] [default, 1]
End HostPartition

◆ A host cannot belong to multiple partitions.

◆ Optionally, use the reserved host name all to configure a single partition
that applies to all hosts in a cluster.

◆ Optionally, use the not operator (~) to exclude hosts or host groups from
the list of hosts in the host partition.

Hosts that are not included in any host partition are controlled by FCFS
scheduling policy instead of fairshare scheduling policy.
Administering Platform LSF

Chapter 14
Fairshare Scheduling
Queue-Level Fairshare

About queue-level fairshare
Fairshare policy configured at the queue level handles resource contention
among users in the same queue. You can define a different fairshare policy for
every queue, even if they share the same hosts. A user’s priority is calculated
separately for each queue.

To submit jobs to a fairshare queue, users must be allowed to use the queue
(USERS in lsb.queues) and must have a share assignment (FAIRSHARE in
lsb.queues). Even cluster and queue administrators cannot submit jobs to a
fairshare queue if they do not have a share assignment.

Viewing queue-level fairshare information
To find out if a queue is a fairshare queue, run bqueues -l. If you see
“USER_SHARES” in the output, then a fairshare policy is configured for the
queue.

Configuring queue-level fairshare
To configure a fairshare queue, define FAIRSHARE in lsb.queues and specify
a share assignment for all users of the queue.

Syntax FAIRSHARE = USER_SHARES[[user, number_shares]...]

◆ You must specify at least one user share assignment.

◆ Enclose the list in square brackets, as shown.

◆ Enclose each user share assignment in square brackets, as shown.
Administering Platform LSF 187

Cross-queue Fairshare

188
Cross-queue Fairshare

Applying the same fairshare policy to several queues
Fairshare policy configured at the queue level handles resource contention
across multiple queues.

You can define a fairshare policy that applies to several queues at the same
time. You define the fairshare policy in a master queue and list slave queues to
which the same fairshare policy applies; slave queues inherit the same fairshare
policy as your master queue. A user has the same priority across the master
and slave queues.

In this way, if a user submits jobs to different queues, user priority is calculated
by taking into account all the jobs the user has submitted across the defined
queues.

To submit jobs to a fairshare queue, users must be allowed to use the queue
(USERS in lsb.queues) and must have a share assignment (FAIRSHARE in
lsb.queues). Even cluster and queue administrators cannot submit jobs to a
fairshare queue if they do not have a share assignment.

Viewing cross-queue fairshare information
Run bqueues -l to know if a queue is part of cross-queue fairshare. The
parameter FAIRSHARE_QUEUES indicates cross-queue fairshare. The first
queue listed in the FAIRSHARE_QUEUES parameter is the master queue—the
queue in which fairshare is configured; all other queues listed inherit the
fairshare policy from the master queue.

All queues that participate in the same cross-queue fairshare will display the
same fairshare information (SCHEDULING POLICIES, FAIRSHARE_QUEUES,
USER_SHARES, SHARE_INFO_FOR) when bqueues -l is used. Fairshare
information applies to all the jobs running in all the queues in the master-slave
set.

% bqueues
QUEUE_NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP
normal 30 Open:Active - - - - 1 1 0 0
short 40 Open:Active - 4 2 - 1 0 1 0
license 50 Open:Active 10 1 1 - 1 0 1 0

% bqueues -l normal
QUEUE: normal
-- For normal low priority jobs, running only if hosts are lightly loaded. This is the
default queue.

PARAMETERS/STATISTICS
PRIO NICE STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SSUSP USUSP RSV
30 20 Open:Inact_Win - - - - 1 1 0 0 0 0
Administering Platform LSF

Chapter 14
Fairshare Scheduling
SCHEDULING PARAMETERS
r15s r1m r15m ut pg io ls it tmp swp mem
loadSched - - - - - - - - - - -
loadStop - - - - - - - - - - -

SCHEDULING POLICIES: FAIRSHARE
FAIRSHARE_QUEUES: normal short license
USER_SHARES: [user1, 100] [default, 1]

SHARE_INFO_FOR: normal/

USER/GROUP SHARES PRIORITY STARTED RESERVED CPU_TIME RUN_TIME
user1 100 9.645 2 0 0.2 7034

USERS: all users

HOSTS: all

...

% bqueues -l short
QUEUE: short
PARAMETERS/STATISTICS
PRIO NICE STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SSUSP USUSP RSV
40 20 Open:Inact_Win - 4 2 - 1 0 1 0 0 0

SCHEDULING PARAMETERS
r15s r1m r15m ut pg io ls it tmp swp mem
loadSched - - - - - - - - - - -
loadStop - - - - - - - - - - -

SCHEDULING POLICIES: FAIRSHARE
FAIRSHARE_QUEUES: normal short license
USER_SHARES: [user1, 100] [default, 1]

SHARE_INFO_FOR: short/

USER/GROUP SHARES PRIORITY STARTED RESERVED CPU_TIME RUN_TIME
user1 100 9.645 2 0 0.2 7034

USERS: all users

HOSTS: all

...
Administering Platform LSF 189

Cross-queue Fairshare

190
Configuring cross-queue fairshare

Considerations ◆ FAIRSHARE must be defined in the master queue. If it is also defined in the
queues listed in FAIRSHARE_QUEUES, it will be ignored.

◆ Cross-queue fairshare can be defined more than once within lsb.queues.
You can define several sets of master-slave queues. However, a queue
cannot belong to more than one master-slave set. For example, you can
define:

❖ In queue normal: FAIRSHARE_QUEUES=short license

❖ In queue priority: FAIRSHARE_QUEUES= night owners

You cannot, however, define night, owners, or priority as slaves in the
normal queue; or normal, short and license as slaves in the priority
queue; or short, license, night, owners as master queues of their own.

◆ Cross-queue fairshare cannot be used with host partition fairshare. It can,
however, be used in the same cluster as queue-level fairshare.

Steps Decide to which queues in your cluster cross-queue fairshare will apply. For
example, in your cluster you may have the queues normal, priority, short,
and license and you want cross-queue fairshare to apply only to normal,
license, and short.

1 Define fairshare policies in your master queue.

In one of the queues, for example normal, define in lsb.queues:

❖ FAIRSHARE and specify a share assignment for all users of the queue.

❖ FAIRSHARE_QUEUES and list queues to which the defined fairshare
policy will also apply

❖ PRIORITY to indicate the priority of the queue; Note, however that the
range of priority defined for queues in cross-queue fairshare cannot be
used with any other queues. For example, you have 4 queues: queue1,
queue2, queue3, queue4. You configure cross-queue fairshare for
queue1, queue2, queue3 and assign priorities of 30, 40, 50 respectively.
The priority of queue4 (which is not part of the cross-queue fairshare)
cannot fall between 30-50. It can be any number up to 30 and any
number higher than 50.
Begin Queue
QUEUE_NAME = normal
PRIORITY = 30
NICE = 20
FAIRSHARE = USER_SHARES[[user1,100] [default,1]]
FAIRSHARE_QUEUES = short license

DESCRIPTION = For normal low priority jobs, running only if
hosts are lightly loaded.

End Queue
Administering Platform LSF

Chapter 14
Fairshare Scheduling
2 In all the queues listed in FAIRSHARE_QUEUES, define all queue values as
desired.

For example:

Begin Queue
QUEUE_NAME = short

PRIORITY = 40
NICE = 20
UJOB_LIMIT = 4
PJOB_LIMIT = 2
End Queue

Begin Queue

QUEUE_NAME = license

PRIORITY = 50
NICE = 10
PREEMPTION = PREEMPTIVE
QJOB_LIMIT = 10
UJOB_LIMIT = 1
PJOB_LIMIT = 1
End Queue
Administering Platform LSF 191

Hierarchical Fairshare

192
Hierarchical Fairshare

About hierarchical fairshare
For both queue and host partitions, hierarchical fairshare lets you allocate
resources to users in a hierarchical manner.

By default, when shares are assigned to a group, group members compete for
resources according to FCFS policy. If you use hierarchical fairshare, you
control the way shares that are assigned collectively are divided among group
members.

If groups have subgroups, you can configure additional levels of share
assignments, resulting in a multi-level share tree that becomes part of the
fairshare policy.

How hierarchical fairshare affects dynamic share priority
When you use hierarchical fairshare, the dynamic share priority formula does
not change, but LSF measures the resource consumption for all levels of the
share tree. To calculate the dynamic priority of a group, LSF uses the resource
consumption of all the jobs in the queue or host partition that belong to users
in the group and all its subgroups, recursively.

How hierarchical fairshare affects job dispatch order
LSF uses the dynamic share priority of a user or group to find out which user's
job to run next. If you use hierarchical fairshare, LSF works through the share
tree from the top level down, and compares the dynamic priority of users and
groups at each level, until the user with the highest dynamic priority is a single
user, or a group that has no subgroups.

Viewing hierarchical share information for a group
Use bugroup -l to find out if you belong to a group, and what the share
distribution is.

This command displays all the share trees that are configured, even if they are
not used in any fairshare policy.

Example % bugroup -l
GROUP_NAME: group1
USERS: group2/ group3/
SHARES: [group2,20] [group3,10]

GROUP_NAME: group2
USERS: user1 user2 user3
SHARES: [others,10] [user3,4]

GROUP_NAME: group3
USERS: all
SHARES: [user2,10] [default,5]
Administering Platform LSF

Chapter 14
Fairshare Scheduling
Viewing hierarchical share information for a host partition
By default, bhpart only displays the top level share accounts associated with
the partition.

Use bhpart -r to display the group information recursively. The output lists
all the groups in the share tree, starting from the top level, and displays the
following information:

◆ Number of shares

◆ Dynamic share priority (LSF compares dynamic priorities of users who
belong to same group, at the same level)

◆ Number of started jobs

◆ Number of reserved jobs

◆ CPU time, in seconds (cumulative CPU time for all members of the group,
recursively)

◆ Run time, in seconds (historical and actual run time for all members of the
group, recursively)

Example % bhpart -r Partition1
HOST_PARTITION_NAME: Partition1
HOSTS: HostA

SHARE_INFO_FOR: Partition1/
USER/GROUP SHARES PRIORITY STARTED RESERVED CPU_TIME RUN_TIME
group1 40 1.867 5 0 48.4 17618
group2 20 0.775 6 0 607.7 24664

SHARE_INFO_FOR: Partition1/group2/

USER/GROUP SHARES PRIORITY STARTED RESERVED CPU_TIME RUN_TIME
user1 8 1.144 1 0 9.6 5108
user2 2 0.667 0 0 0.0 0
others 1 0.046 5 0 598.1 19556

Configuring hierarchical fairshare
To define a hierarchical fairshare policy, configure the top-level share
assignment in lsb.queues or lsb.hosts, as usual. Then, for any group of
users affected by the fairshare policy, configure a share tree in the UserGroup
section of lsb.users. This specifies how shares assigned to the group,
collectively, are distributed among the individual users or subgroups.

If shares are assigned to members of any group individually, using @, there can
be no further hierarchical fairshare within that group. The shares are assigned
recursively to all members of all subgroups, regardless of further share
distributions defined in lsb.users. The group members and members of all
subgroups compete for resources according to FCFS policy.

You can choose to define a hierarchical share tree for some groups but not
others. If you do not define a share tree for any group or subgroup, members
compete for resources according to FCFS policy.
Administering Platform LSF 193

Hierarchical Fairshare

194
Configuring a share tree
Group membership is already defined in the UserGroup section of
lsb.users. To configure a share tree, use the USER_SHARES column to
describe how the shares are distributed in a hierachical manner. Use the
following format.

Begin UserGroup
GROUP_NAME GROUP_MEMBER USER_SHARES
GroupB (User1 User2) ()
GroupC (User3 User4) ([User3, 3] [User4, 4])
GroupA (GroupB GroupC User5) ([User5, 1] [default, 10])
End UserGroup

◆ User groups must be defined before they can be used (in the
GROUP_MEMBER column) to define other groups.

◆ Enclose the share assignment list in parentheses, as shown, even if you do
not specify any user share assignments.

Example An Engineering queue or host partition organizes users hierarchically, and
divides the shares as shown. It does not matter what the actual number of
shares assigned at each level is.

The Development group will get the largest share (50%) of the resources in the
event of contention. Shares assigned to the Development group can be further
divided among the Systems, Application and Test groups which receive 15%,
35%, and 50%, respectively. At the lowest level, individual users compete for
these shares as usual.

One way to measure a user’s importance is to multiply their percentage of the
resources at every level of the share tree. For example, User1 is entitled to 10%
of the available resources (.50 x .80 x .25 = .10) and User3 is entitled to 4%
(.80 x .20 x .25 = .04). However, if Research has the highest dynamic share
priority among the 3 groups at the top level, and ChipY has a higher dynamic
priority than ChipX, the next comparison is between User3 and User4, so the
importance of User1 is not relevant. The dynamic priority of User1 is not even
calculated at this point.

Engineering

Technical
Support Development Research

Test Application Systems Chip X Chip Y

User 1 User 2 User 3 User 4

25% 50% 25%

50% 35% 15% 80% 20%

50% 50% 80% 20%
Administering Platform LSF

Chapter 14
Fairshare Scheduling
Users Affected by Multiple Fairshare Policies
If you belong to multiple user groups, which are controlled by different
fairshare policies, each group probably has a different dynamic share priority
at any given time. By default, if any one of these groups becomes the highest
priority user, you could be the highest priority user in that group, and LSF
would attempt to place your job.

To restrict the number of fairshare policies that will affect your job, submit your
job and specify a single user group that your job will belong to, for the
purposes of fairshare scheduling. LSF will not attempt to dispatch this job
unless the group you specified is the highest priority user. If you become the
highest priority user because of some other share assignment, another one of
your jobs might be dispatched, but not this one.

Submitting a job and specifying a user group
To associate a job with a user group for the purposes of fairshare scheduling,
use bsub -G and specify a group that you belong to. If you use hierarchical
fairshare, you must specify a group that does not contain any subgroups.

Example User1 shares resources with groupA and groupB. User1 is also a member of
groupA, but not any other groups.

User1 submits a job:

bsub sleep 100

By default, the job could be considered for dispatch if either User1 or GroupA
has highest dynamic share priority.

User1 submits a job and associates the job with GroupA:

bsub -G groupA sleep 100

If User1 is the highest priority user, this job will not be considered.

◆ User1 can only associate the job with a group that he is a member of.

◆ User1 cannot associate the job with his individual user account, because
bsub -G only accepts group names.

Example with
hierarchical

fairshare

In the share tree, User1 shares resources with GroupA at the top level. GroupA
has 2 subgroups, B and C. GroupC has 1 subgroup, GroupD. User1 also
belongs to GroupB and GroupC.

User1 submits a job:

% bsub sleep 100

By default, the job could be considered for dispatch if either User1, GroupB,
or GroupC has highest dynamic share priority.

User1 submits a job and associates the job with GroupB:

% bsub -G groupB sleep 100
Administering Platform LSF 195

Users Affected by Multiple Fairshare Policies

196
If User1 or GroupC is the highest priority user, this job will not be considered.

◆ User1 cannot associate the job with GroupC, because GroupC includes a
subgroup.

◆ User1 cannot associate the job with his individual user account, because
bsub -G only accepts group names.
Administering Platform LSF

Chapter 14
Fairshare Scheduling
Ways to Configure Fairshare

Global fairshare
Global fairshare balances resource usage across the entire cluster according to
one single fairshare policy. Resources used in one queue affect job dispatch
order in another queue.

If 2 users compete for resources, their dynamic share priority is the same in
every queue.

Configuring To configure global fairshare, you must use host partition fairshare. Use the
keyword all to configure a single partition that includes all the hosts in the
cluster.

Example Begin HostPartition
HPART_NAME =GlobalPartition
HOSTS = all
USER_SHARES = [groupA@, 3] [groupB, 7] [default, 1]
End HostPartition

Chargeback fairshare
Chargeback fairshare lets competing users share the same hardware resources
according to a fixed ratio. Each user is entitled to a specified portion of the
available resources.

If 2 users compete for resources, the most important user is entitled to more
resources.

Configuring To configure chargeback fairshare, put competing users in separate user
groups and assign a fair number of shares to each group.

Example Suppose two departments contributed to the purchase of a large system. The
engineering department contributed 70 percent of the cost, and the accounting
department 30 percent. Each department wants to get their money’s worth
from the system.

1 Define 2 user groups in lsb.users, one listing all the engineers, and one
listing all the accountants.
Begin UserGroup
Group_Name Group_Member
eng_users (user6 user4)
acct_users (user2 user5)
End UserGroup

2 Configure a host partition for the host, and assign the shares appropriately.
Begin HostPartition
HPART_NAME = big_servers
HOSTS = hostH
USER_SHARES = [eng_users, 7] [acct_users, 3]
End HostPartition
Administering Platform LSF 197

Ways to Configure Fairshare

198
Equal Share
Equal share balances resource usage equally between users. This is also called
round-robin scheduling, because if users submit identical jobs, LSF runs one
job from each user in turn.

If 2 users compete for resources, they have equal importance.

Configuring To configure equal share, use the keyword default to define an equal share
for every user.

Example Begin HostPartition
HPART_NAME = equal_share_partition
HOSTS = all
USER_SHARES = [default, 1]
End HostPartition

Priority user and static priority fairshare
There are two ways to configure fairshare so that a more important user’s job
always overrides the job of a less important user, regardless of resource use.

◆ Static Priority Fairshare

Dynamic priority is no longer dynamic, because resource use is ignored.
The user with the most shares always goes first.

This is useful to configure multiple users in a descending order of priority.

◆ Priority User Fairshare

Dynamic priority is calculated as usual, but more important and less
important users are assigned a drastically different number of shares, so
that resource use has virtually no effect on the dynamic priority: the user
with the overwhelming majority of shares always goes first. However, if
two users have a similar or equal number of shares, their resource use still
determines which of them goes first.

This is useful for isolating a group of high-priority or low-priority users,
while allowing other fairshare policies to operate as usual most of the time.

Priority user fairshare
Priority user fairshare gives priority to important users, so their jobs override
the jobs of other users. You can still use fairshare policies to balance resources
among each group of users.

If 2 users compete for resources, and one of them is a priority user, the priority
user’s job always runs first.

Configuring To configure priority users, assign the overwhelming majority of shares to the
most important users.
Administering Platform LSF

Chapter 14
Fairshare Scheduling
Example A queue is shared by key users and other users. As long as there are jobs from
key users waiting for resources, other users’ jobs will not be dispatched.

1 Define a user group called key_users in lsb.users.

2 Configure fairshare and assign the overwhelming majority of shares to the
critical users:
Begin Queue
QUEUE_NAME = production
FAIRSHARE = USER_SHARES[[key_users@, 2000] [others, 1]]
...
End Queue

Key users have 2000 shares each, while other users together have only 1 share.
This makes it virtually impossible for other users’ jobs to get dispatched unless
none of the users in the key_users group has jobs waiting to run.

If you want the same fairshare policy to apply to jobs from all queues,
configure host partition fairshare in a similar way.

Static priority fairshare
Static priority fairshare assigns resources to the user with the most shares.
Resource usage is ignored.

If 2 users compete for resources, the most important user’s job always runs first.

Configuring To implement static priority fairshare, set all the weighting factors used in the
dynamic priority formula to 0 (zero).

1 Edit lsb.params:

a Set CPU_TIME_FACTOR to 0.

b Set RUN_TIME_FACTOR to 0.

c Set RUN_JOB_FACTOR to 0.

d Set COMMITTED_RUN_TIME_FACTOR to 0.
Administering Platform LSF 199

Ways to Configure Fairshare

200
 Administering Platform LSF

P A R T

IV
Job Scheduling and Dispatch

Contents ◆ Chapter 15, “Resource Allocation Limits”

◆ Chapter 16, “Reserving Resources”

◆ Chapter 17, “Managing Software Licenses with LSF”

◆ Chapter 18, “Dispatch and Run Windows”

◆ Chapter 19, “Job Dependencies”

◆ Chapter 20, “Job Priorities”

◆ Chapter 21, “Job Requeue and Job Rerun”

◆ Chapter 22, “Job Checkpoint, Restart, and Migration”

◆ Chapter 23, “Chunk Job Dispatch”

◆ Chapter 24, “Job Arrays”

C H A P T E R

15
Resource Allocation Limits

Contents ◆ “About Resource Allocation Limits” on page 204

◆ “Configuring Resource Allocation Limits” on page 207
Administering Platform LSF 203

About Resource Allocation Limits

204
About Resource Allocation Limits

Contents ◆ “What resource allocation limits do” on page 204

◆ “How LSF enforces limits” on page 204

◆ “How LSF counts resources” on page 205

◆ “Limits for resource consumers” on page 205

What resource allocation limits do
By default, resource consumers like users, hosts, queues, or projects are not
limited in the resources available to them for running jobs. Resource allocation
limits restrict the amount of a given resource that must be available during job
scheduling for different classes of jobs to start, and which resource consumers
the limits apply to. If all of the resource has been consumed, no more jobs can
be started until some of the resource is released.

For example, by limiting maximum amount of memory for each of your hosts,
you can make sure that your system operates at optimal performance. By
defining a memory limit for some users submitting jobs to a particular queue
and a specified set of hosts, you can prevent these users from using up all the
memory in the system at one time.

Resource allocation limits and resource usage limits
Resource allocation limits are not the same as resource usage limits, which are
enforced during job run time. For example, you set CPU limits, memory limits,
and other limits that take effect after a job starts running. See Chapter 25,
“Runtime Resource Usage Limits” for more information.

How LSF enforces limits
Resource allocation limits are enforced so that they apply to:

◆ Several kinds of resources:

❖ Job slots by host

❖ Job slots per processor

❖ Memory (MB or percentage)

❖ Swap space (MB or percentage)

❖ Tmp space (MB or percentage)

❖ Software licenses

❖ Other shared resources

◆ Several kinds of resource consumers:

❖ Users and user groups (all users or per-user)

❖ Hosts and host groups (all hosts or per-host)

❖ Queues (all queues or per-queue)

❖ Projects (all projects or per-project)

◆ All jobs in the cluster

◆ Combinations of consumers:
Administering Platform LSF

Chapter 15
Resource Allocation Limits
❖ For jobs running on different hosts in the same queue

❖ For jobs running from different queues on the same host

How LSF counts resources
Resources on a host are not available if they are taken by jobs that have been
started, but have not yet finished. This means running and suspended jobs
count against the limits for queues, users, hosts, projects, and processors that
they are associated with.

Job slot limits Job slot limits often correspond to the maximum number of jobs that can run
at any point in time. For example, a queue cannot start jobs if it has no job
slots available, and jobs cannot run on hosts that have no available job slots.

Resource
reservation and

backfill

When processor or memory reservation occurs, the reserved resources count
against the limits for users, queues, hosts, projects, and processors. When
backfilling of parallel jobs occurs, the backfill jobs do not count against any
limits.

MultiCluster Limits apply only to the cluster where lsb.resources is configured. If the
cluster leases hosts from another cluster, limits are enforced on those hosts as
if they were local hosts.

Limits for resource consumers

Host groups If a limit is specified for a host group, the total amount of a resource used by
all hosts in that group is counted. If a host is a member of more than one
group, each job running on that host is counted against the limit for all groups
to which the host belongs.

Limits for users
and user groups

Jobs are normally queued on a first-come, first-served (FCFS) basis. It is
possible for some users to abuse the system by submitting a large number of
jobs; jobs from other users must wait until these jobs complete. Limiting
resources by user prevents users from monopolizing all the resources.

Users can submit an unlimited number of jobs, but if they have reached their
limit for any resource, the rest of their jobs stay pending, until some of their
running jobs finish or resources become available.

If a limit is specified for a user group, the total amount of a resource used by
all users in that group is counted. If a user is a member of more than one
group, each of that user’s jobs is counted against the limit for all groups to
which that user belongs.

Use the keyword all to configure limits that apply to each user or user group
in a cluster. This is useful if you have a large cluster but only want to exclude
a few users from the limit definition.
Administering Platform LSF 205

About Resource Allocation Limits

206
Per-user limits on
users and groups

Per-user limits are enforced on each user or individually to each user in the
user group listed. If a user group contains a subgroup, the limit also applies to
each member in the subgroup recursively.

Per-user limits that use the keywords all apply to each user in a cluster. If user
groups are configured, the limit applies to each member of the user group, not
the group as a whole.
Administering Platform LSF

Chapter 15
Resource Allocation Limits
Configuring Resource Allocation Limits

Contents ◆ “lsb.resources file” on page 207

◆ “Enabling resource allocation limits” on page 208

◆ “Configuring cluster-wide limits” on page 208

◆ “Compatibility with pre-Version 5.0 job slot limits” on page 208

◆ “How resource allocation limits map to pre-Version 5.0 job slot limits” on
page 208

◆ “Example limit configurations” on page 209

lsb.resources file
Configure all resource allocation limits in one or more Limit sections in the
lsb.resources file. Limit sections set limits for how much of the specified
resources must be available for different classes of jobs to start, and which
resource consumers the limits apply to.

Resource
parameters

Consumer
parameters

To limit... Set in a Limit section of lsb.resources...

Total number of job slots that can be used
by specific jobs

SLOTS

Jobs slots based on the number of
processors on each host affected by the
limit

SLOTS_PER_PROCESSOR and
PER_HOST

Memory—if PER_HOST is set for the limit,
the amount can be a percentage of
memory on each host in the limit

MEM (MB or percentage)

Swap space—if PER_HOST is set for the
limit, the amount can be a percentage of
swap space on each host in the limit

SWP (MB or percentage)

Tmp space—if PER_HOST is set for the
limit, the amount can be a percentage of
tmp space on each host in the limit

TMP (MB or percentage)

Software licenses LICENSE or RESOURCE

Any shared resource RESOURCE

For jobs submitted... Set in a Limit section of lsb.resources...

By all specified users or user groups USERS

To all specified queues QUEUES

To all specified hosts or host groups HOSTS

For all specified projects PROJECTS

By each specified user or each member of
the specified user groups

PER_USER

To each specified queue PER_QUEUE

To each specified host or each member of
the specified host groups

PER_HOST

For each specified project PER_PROJECT
Administering Platform LSF 207

Configuring Resource Allocation Limits

208
Enabling resource allocation limits

Resource
allocation limits

scheduling plugin

To enable resource allocation limits in your cluster, configure the resource
allocation limits scheduling plugin schmod_limit in lsb.modules.

Configuring lsb.modules
Begin PluginModule
SCH_PLUGIN RB_PLUGIN SCH_DISABLE_PHASES
schmod_default () ()
schmod_limit () ()
End PluginModule

Configuring cluster-wide limits
To configure limits that take effect for your entire cluster, configure limits in
lsb.resources, but do not specify any consumers.

Compatibility with pre-Version 5.0 job slot limits
The Limit section of lsb.resources does not support the keywords or
format used in lsb.users, lsb.hosts, and lsb.queues. However, any
existing job slot limit configuration in these files will continue to apply.

Existing limits in lsb.users, lsb.hosts, and lsb.queues with the same
scope as a new limit in lsb.resources, but with a different value are ignored.
The value of the new limit in lsb.resources is used.

How resource allocation limits map to pre-Version 5.0 job slot limits
Job slot limits are the only type of limit you can configure in lsb.users,
lsb.hosts, and lsb.queues. You cannot configure limits for user groups,
host groups, and projects in lsb.users, lsb.hosts, and lsb.queues. You
should not configure any new resource allocation limits in lsb.users,
lsb.hosts, and lsb.queues. Use lsb.resources to configure all new
resource allocation limits, including job slot limits.

Job slot resources Resource consumers (lsb.resources) Existing limit
(file)

(lsb.resources) USERS PER_USER QUEUES HOSTS PER_HOST

SLOTS — all — host_name — JL/U
(lsb.hosts)

SLOTS_PER_PROCESSOR user_name — — — all JL/P
(lsb.users)

SLOTS — all queue_name — — UJOB_LIMIT
(lsb.queues)

SLOTS user_name — — — — MAX_JOBS
(lsb.users)

SLOTS — — queue_name — all HJOB_LIMIT
(lsb.queues)

SLOTS — — — host_name — MXJ
(lsb.hosts)
Administering Platform LSF

Chapter 15
Resource Allocation Limits
Limits for the following resources have no corresponding limit in lsb.users,
lsb.hosts, and lsb.queues:

◆ SWP

◆ TMP

◆ LICENSE

◆ RESOURCE

Example limit configurations
Each set of limits is defined in a Limit section enclosed by Begin Limit and
End Limit.

Example 1 user1 is limited to 2 job slots on hostA, and user2’s jobs on queue normal
are limited to 20 MB of memory:

Begin Limit
HOSTS SLOTS MEM SWP TMP USERS QUEUES
hostA 2 - - - user1 -
- - 20 - - user2 normal
End Limit

Example 2 Set a job slot limit of 2 for user user1 submitting jobs to queue normal on host
hosta for all projects, but only one job slot for all queues and hosts for project
test:

Begin Limit
HOSTS SLOTS PROJECTS USERS QUEUES
hosta 2 - user1 normal
 - 1 test user1 -
End Limit

Example 3 Limit usage of hosts in license1 group:

◆ 10 jobs can run from normal queue

◆ Any number can run from short queue, but only can use 200 MB of
memory in total

◆ Each other queue can run 30 jobs, each queue using up to 300 MB of
memory in total

Begin Limit
HOSTS SLOTS MEM PER_QUEUE
license1 10 - normal
license1 - 200 short
license1 30 300 all ~normal ~short
End Limit

SLOTS_PER_PROCESSOR — — queue_name — all PJOB_LIMIT
(lsb.queues)

SLOTS — — queue_name — — QJOB_LIMIT
(lsb.queues)

Job slot resources Resource consumers (lsb.resources) Existing limit
(file)

(lsb.resources) USERS PER_USER QUEUES HOSTS PER_HOST
Administering Platform LSF 209

Configuring Resource Allocation Limits

210
Example 4 All users in user group ugroup1 except user1 using queue1 and queue2 and
running jobs on hosts in host group hgroup1 are limited to 2 job slots per
processor on each host:

Begin Limit
NAME = limit1
Resources:
SLOTS_PER_PROCESSOR = 2
#Consumers:
QUEUES = queue1 queue2
USERS = ugroup1 ~user1
PER_HOST = hgroup1
End Limit

Example 5 user1 and user2 can use all queues and all hosts in the cluster with a limit of
20 MB of available memory:

Begin Limit
MEM USERS
20 (user1 user2)
End Limit

Example 6 All users in user group ugroup1 can use queue1 and queue2 and run jobs on
any host in host group hgroup1 sharing 10 job slots:

Begin Limit
SLOTS QUEUES USERS HOSTS
10 (queue1 queue2) ugroup1 hgroup1
End Limit

Example 7 All users in user group ugroup1 except user1 can use all queues but queue1
and run jobs with a limit of 10% of available memory on each host in host
group hgroup1:

Begin Limit
NAME = 10_percent_mem
Resources:
MEM = 10%
QUEUES = all ~queue1
USERS = ugroup1 ~user1
PER_HOST = hgroup1
End Limit

Example 8 Limit users in the develop group to 1 job on each host, and 50% of the
memory on the host.

Begin Limit
SLOTS MEM USERS PER_HOST
1 50% develop all
End Limit
Administering Platform LSF

Chapter 15
Resource Allocation Limits
Example 9 Limit software license lic1, with quantity 100, where user1 can use 90
licenses and all other users are restricted to 10.

Begin Limit
USERS LICENSES
user1 [lic1, 90]
all ~user1 [lic1, 10]
End Limit

lic1 is defined as a decreasing numeric shared resource in lsf.shared.

To submit a job to use one lic1 license, use the rusage string in the -R option
of bsub specify the license:

% bsub -R "rusage[lic1=1]" my-job

Example 10 Jobs from crash project can use 10 lic1 licenses, while jobs from all other
projects together can use 5.

Begin Limit
LICENSES PROJECTS
[lic1, 10] crash
[lic1, 5] all ~crash
End Limit

lic1 is defined as a decreasing numeric shared resource in lsf.shared.
Administering Platform LSF 211

Configuring Resource Allocation Limits

212
 Administering Platform LSF

C H A P T E R

16
Reserving Resources

Contents ◆ “About Resource Reservation” on page 214

◆ “Using Resource Reservation” on page 215

◆ “Memory Reservation for Pending Jobs” on page 216

◆ “Viewing Resource Reservation Information” on page 219
Administering Platform LSF 213

About Resource Reservation

214
About Resource Reservation
When a job is dispatched, the system assumes that the resources that the job
consumes will be reflected in the load information. However, many jobs do not
consume the resources they require when they first start. Instead, they will
typically use the resources over a period of time.

For example, a job requiring 100 MB of swap is dispatched to a host having
150 MB of available swap. The job starts off initially allocating 5 MB and
gradually increases the amount consumed to 100 MB over a period of 30
minutes. During this period, another job requiring more than 50 MB of swap
should not be started on the same host to avoid over-committing the resource.

Resources can be reserved to prevent overcommitment by LSF. Resource
reservation requirements can be specified as part of the resource requirements
when submitting a job, or can be configured into the queue level resource
requirements.

How resource reservation works
When deciding whether to schedule a job on a host, LSF considers the reserved
resources of jobs that have previously started on that host. For each load index,
the amount reserved by all jobs on that host is summed up and subtracted (or
added if the index is increasing) from the current value of the resources as
reported by the LIM to get amount available for scheduling new jobs:

available amount = current value - reserved amount for all jobs

For example:

% bsub -R "rusage[tmp=30:duration=30:decay=1]" myjob

will reserve 30 MB of temp space for the job. As the job runs, the amount
reserved will decrease at approximately 1 MB/minute such that the reserved
amount is 0 after 30 minutes.

Queue-level and job-level resource reservation
The queue level resource requirement parameter RES_REQ may also specify
the resource reservation. If a queue reserves certain amount of a resource, you
cannot reserve a greater amount of that resource at the job level.

For example, if the output of bqueues -l command contains:

RES_REQ: rusage[mem=40:swp=80:tmp=100]

the following submission will be rejected since the requested amount of certain
resources exceeds queue's specification:

% bsub -R "rusage[mem=50:swp=100]" myjob
Administering Platform LSF

Chapter 16
Reserving Resources
Using Resource Reservation

Queue-level resource reservation
At the queue level, resource reservation allows the cluster administrator to
specify the amount of resources to reserve for jobs in the queue. It also serves
as the upper limits of resource reservation if a user also specifies it when
submitting a job.

Queue-level resource reservation and pending reasons
The use of RES_REQ affects the pending reasons as displayed by bjobs. If
RES_REQ is specified in the queue and the loadSched thresholds are not
specified, then the pending reasons for each individual load index will not be
displayed.

Configuring resource reservation at the queue level
Queue-level resource reservation can be configured as part of the RES_REQ
parameter. The resource reservation requirement can be configured at the
queue level as part of the queue level resource requirements. Use the resource
usage (rusage) section of the resource requirement string to specify the
amount of resources a job should reserve after it is started.

Example Begin Queue
.
RES_REQ = select[type==any] rusage[swap=100:mem=40:duration=60]
.
End Queue

This will allow a job to be scheduled on any host that the queue is configured
to use and will reserve 100 MB of swap and 40 MB of memory for a duration
of 60 minutes.

Example Begin Queue
.
RES_REQ = swap>50 rusage[swp=40:duration=5h:decay=1]
.
End Queue

Job-level resource reservation
To specify resource reservation at the job level, use bsub -R and include the
resource usage section in the resource requirement string.
Administering Platform LSF 215

Memory Reservation for Pending Jobs

216
Memory Reservation for Pending Jobs

About memory reservation for pending jobs
By default, the rusage string reserves resources for running jobs. Because
resources are not reserved for pending jobs, some memory-intensive jobs
could be pending indefinitely because smaller jobs take the resources
immediately before the larger jobs can start running. The more memory a job
requires, the worse the problem is.

Memory reservation for pending jobs solves this problem by reserving memory
as it becomes available, until the total required memory specified on the
rusage string is accumulated and the job can start. Use memory reservation
for pending jobs if memory-intensive jobs often compete for memory with
smaller jobs in your cluster.

Configuring memory reservation for pending jobs

RESOURCE_RESERVE parameter
Use the RESOURCE_RESERVE parameter in lsb.queues to reserve host
memory for pending jobs.

The amount of memory reserved is based on the currently available memory
when the job is pending. Reserved memory expires at the end of the time
period represented by the number of dispatch cycles specified by the value of
MAX_RESERVE_TIME set on the RESOURCE_RESERVE parameter.

Configure
lsb.modules

To enable memory reservation for sequential jobs, add the LSF scheduler
plugin module name for resource reservation (schmod_reserve) to the
lsb.modules file:

Begin PluginModule
SCH_PLUGIN RB_PLUGIN SCH_DISABLE_PHASES
schmod_default () ()
schmod_reserve () ()
schmod_preemption () ()
End PluginModule

Configure
lsb.queues

Set the RESOURCE_RESERVE parameter in a queue defined in lsb.queues.

The RESOURCE_RESERVE parameter overrides the SLOT_RESERVE parameter.
If both RESOURCE_RESERVE and SLOT_RESERVE are defined in the same
queue, Job slot reservation and memory reservation are enabled and an error
is displayed when the cluster is reconfigured. SLOT_RESERVE is ignored.

Example queues The following queue enables memory reservation for pending jobs:
Administering Platform LSF

Chapter 16
Reserving Resources
Begin Queue
QUEUE_NAME = reservation
DESCRIPTION = For resource reservation
PRIORITY=40
RESOURCE_RESERVE = MAX_RESERVE_TIME[20]
End Queue

Using memory reservation for pending jobs
Use the rusage string in the -R option to bsub or the RES_REQ parameter in
lsb.queues to specify the amount of memory required for the job. Submit the
job to a queue with RESOURCE_RESERVE configured.

See “Examples” on page 218 for examples of jobs that use memory reservation.

How memory reservation for pending jobs works

Amount of
memory reserved

The amount of memory reserved is based on the currently available memory
when the job is pending. For example, if LIM reports that a host has 300 MB
of memory available, the job submitted by the following command:

% bsub -R "rusage[mem=400]" -q reservation my_job

will be pending and reserve the 300 MB of available memory. As other jobs
finish, the memory that becomes available is added to the reserved memory
until 400 MB accumulates, and the job starts.

No memory is reserved if no job slots are available for the job because the job
could not run anyway, so reserving memory would waste the resource.

Only memory is accumulated while the job is pending; other resources
specified on the rusage string are only reserved when the job is running.
Duration and decay have no effect on memory reservation while the job is
pending.

How long memory is reserved (MAX_RESERVE_TIME)
Reserved memory expires at the end of the time period represented by the
number of dispatch cycles specified by the value of MAX_RESERVE_TIME set
on the RESOURCE_RESERVE parameter. If a job has not accumulated enough
memory to start by the time MAX_RESERVE_TIME expires, it releases all its
reserved memory so that other pending jobs can run. After the reservation time
expires, the job cannot reserve slots or memory for one scheduling session, so
other jobs have a chance to be dispatched. After one scheduling session, the
job can reserve available resources again for another period specified by
MAX_RESERVE_TIME.
Administering Platform LSF 217

Memory Reservation for Pending Jobs

218
Examples

lsb.queues The following queues are defined in lsb.queues:

Begin Queue
QUEUE_NAME = reservation
DESCRIPTION = For resource reservation
PRIORITY=40
RESOURCE_RESERVE = MAX_RESERVE_TIME[20]
End Queue

Assumptions Assume one host in the cluster with 10 CPUs and 1 GB of free memory
currently available.

Sequential jobs Each of the following sequential jobs requires 400 MB of memory and will run
for 300 minutes.

◆ Job 1:
% bsub -W 300 -R "rusage[mem=400]" -q reservation myjob1

The job will start running, using 400M of memory and one job slot.

◆ Job 2:

Submitting a second job with same requirements will get the same result.

◆ Job 3:

Submitting a third job with same requirements will reserve one job slot,
and reserve all free memory, if the amount of free memory is between 20
MB and 200 MB (some free memory may be used by the operating system
or other software.)
Administering Platform LSF

Chapter 16
Reserving Resources
Viewing Resource Reservation Information

Viewing host-level resource information

bhosts command Use bhosts -l to show the amount of resources reserved on each host. In the
following example, 143 MB of memory is reserved on hostA, and no memory
is currently available on the host.

$ bhosts -l hostA
HOST hostA
STATUS CPUF JL/U MAX NJOBS RUN SSUSP USUSP RSV DISPATCH_WINDOW
ok 20.00 - 4 2 1 0 0 1 -

CURRENT LOAD USED FOR SCHEDULING:
r15s r1m r15m ut pg io ls it tmp swp mem

Total 1.5 1.2 2.0 91% 2.5 7 49 0 911M 915M 0M
Reserved 0.0 0.0 0.0 0% 0.0 0 0 0 0M 0M 143M

Use bhosts -s to view information about shared resources.

Viewing queue-level resource information

bqueues -l To see the resource usage configured at the queue level, use bqueues -l.

$ bqueues -l reservation
QUEUE: reservation
 -- For resource reservation

PARAMETERS/STATISTICS
PRIO NICE STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SSUSP USUSP RSV
40 0 Open:Active - - - - 4 0 0 0 0 4

SCHEDULING PARAMETERS
 r15s r1m r15m ut pg io ls it tmp swp mem
 loadSched - - - - - - - - - - -
 loadStop - - - - - - - - - - -

SCHEDULING POLICIES: RESOURCE_RESERVE

USERS: all users
HOSTS: all

Maximum resource reservation time: 600 seconds
Administering Platform LSF 219

Viewing Resource Reservation Information

220
Viewing reserved memory for pending jobs

bjobs -l If the job memory requirements cannot be satisfied, bjobs -l shows the
pending reason. bjobs -l shows both reserved slots and reserved memory.

For example, the following job reserves 60 MB of memory on hostA:

$ bsub -m hostA -n 2 -q reservation -R"rusage[mem=60]" sleep 8888
Job <3> is submitted to queue <reservation>.

bjobs -l shows the reserved memory:

$ bjobs -lp

Job <3>, User <user1>, Project <default>, Status <PEND>, Queue <reservation>
 , Command <sleep 8888>
Tue Jan 22 17:01:05: Submitted from host <user1>, CWD </home/user1/>, 2 Processors
Requested, Requested Resources <rusage[mem=60]>, Specified Hosts <hostA>;
Tue Jan 22 17:01:15: Reserved <1> job slot on host <hostA>;
Tue Jan 22 17:01:15: Reserved <60> megabyte memory on host <60M*hostA>;
 PENDING REASONS:
 Not enough job slot(s): hostA;

 SCHEDULING PARAMETERS:
 r15s r1m r15m ut pg io ls it tmp swp mem
 loadSched - - - - - - - - - - -
 loadStop - - - - - - - - - - -
Administering Platform LSF

C H A P T E R

17
Managing Software Licenses with

LSF

Software licenses are valuable resources that must be utilized to their full
potential. This section discusses how LSF can help manage licensed
applications to maximize utilization and minimize job failure due to license
problems.

Contents ◆ “Using Licensed Software with LSF” on page 222

◆ “Host Locked Licenses” on page 223

◆ “Counted Host Locked Licenses” on page 224

◆ “Network Floating Licenses” on page 225
Administering Platform LSF 221

Using Licensed Software with LSF

222
Using Licensed Software with LSF
Many applications have restricted access based on the number of software
licenses purchased. LSF can help manage licensed software by automatically
forwarding jobs to licensed hosts, or by holding jobs in batch queues until
licenses are available.

In this section LSF can manage three types of software licenses, described in the following
sections:

◆ “Host Locked Licenses” on page 223

◆ “Counted Host Locked Licenses” on page 224

◆ “Network Floating Licenses” on page 225
Administering Platform LSF

Chapter 17
Managing Software Licenses with LSF
Host Locked Licenses
Host locked software licenses allow users to run an unlimited number of
copies of the product on each of the hosts that has a license.

Configuring host locked licenses
You can configure a Boolean resource to represent the software license, and
configure your application to require the license resource. When users run the
application, LSF chooses the best host from the set of licensed hosts.

See “Boolean resources” on page 116 for information about configuring
Boolean resources.

See the Platform LSF Reference for information about the lsf.task file and
instructions on configuring resource requirements for an application.
Administering Platform LSF 223

Counted Host Locked Licenses

224
Counted Host Locked Licenses
Counted host locked licenses are only available on specific licensed hosts, but
also place a limit on the maximum number of copies available on the host.

Configuring counted host locked licenses
You configure counted host locked licenses by having LSF determine the
number of licenses currently available. Use either of the following to count the
host locked licenses:

◆ External LIM (ELIM)

◆ A check_licenses shell script

Using an External
LIM

To use an external LIM (ELIM) to get the number of licenses currently available,
configure an external load index licenses giving the number of free licenses
on each host. To restrict the application to run only on hosts with available
licenses, specify licenses>=1 in the resource requirements for the
application.

See “External Load Indices and ELIM” on page 134 for instructions on writing
and using an ELIM and configuring resource requirements for an application.

See the Platform LSF Reference for information about the lsf.task file.

Using a
check_license

script

There are two ways to use a check_license shell script to check license
availability and acquire a license if one is available:

◆ Configure the check_license script as a job-level pre-execution
command when submitting the licensed job:
% bsub -m licensed_hosts -E check_license licensed_job

◆ Configure the check_license script as a queue-level pre-execution
command. See “Configuring Pre- and Post-Execution Commands” on
page 312 for information about configuring queue-level pre-execution
commands.

It is possible that the license becomes unavailable between the time the
check_license script is run, and when the job is actually run. To handle this
case, configure a queue so that jobs in this queue will be requeued if they exit
with values indicating that the license was not successfully obtained.

See “Automatic Job Requeue” on page 245 for more information.
Administering Platform LSF

Chapter 17
Managing Software Licenses with LSF
Network Floating Licenses
A network floating license allows a fixed number of machines or users to run
the product at the same time, without restricting which host the software can
run on. Floating licenses are cluster-wide resources; rather than belonging to
a specific host, they belong to all hosts in the cluster.

LSF can be used to manage floating licenses using the following LSF features:

◆ Shared resources

◆ Resource reservation

◆ Job requeuing

Using LSF to run licensed software can improve the utilization of the licenses.
The licenses can be kept in use 24 hours a day, 7 days a week. For expensive
licenses, this increases their value to the users. Floating Licenses also increase
productivity, because users do not have to wait for a license to become
available.

LSF jobs can make use of floating licenses when:

◆ All license jobs are run through LSF

◆ Licenses are managed outside of LSF control

All licenses used through LSF
If all jobs requiring licenses are submitted through LSF, then LSF could regulate
the allocation of licenses to jobs and ensure that a job is not started if the
required license is not available. A static resource is used to hold the total
number of licenses that are available. The static resource is used by LSF as a
counter which is decremented by the resource reservation mechanism each
time a job requiring that resource is started.

Example
For example, suppose that there are 10 licenses for the Verilog package
shared by all hosts in the cluster. The LSF configuration files should be
specified as shown below. The resource is a static value, so an ELIM is not
necessary.

lsf.shared Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION
verilog Numeric () N (Floating licenses for
Verilog)
End Resource

lsf.cluster.cluster_name
Begin ResourceMap
RESOURCENAME LOCATION
verilog (10@[all])
End ResourceMap
Administering Platform LSF 225

Network Floating Licenses

226
Submitting jobs The users would submit jobs requiring verilog licenses as follows:

% bsub -R 'rusage[verilog=1]' myprog

Licenses used outside of LSF control
To handle the situation where application licenses are used by jobs outside of
LSF, use an ELIM to dynamically collect the actual number of licenses available
instead of relying on a statically configured value. The ELIM periodically
informs LSF of the number of available licenses, and LSF takes this into
consideration when scheduling jobs.

Example
Assuming there are a number of licenses for the Verilog package that can be
used by all the hosts in the cluster, the LSF configuration files could be set up
to monitor this resource as follows:

lsf.shared Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION
verilog Numeric 60 N (Floating licenses
for Verilog)
End Resource

lsf.cluster.cluster_name
Begin ResourceMap
RESOURCENAME LOCATION
verilog ([all])
End ResourceMap

The INTERVAL in the lsf.shared file indicates how often the ELIM is
expected to update the value of the Verilog resource—in this case every 60
seconds. Since this resource is shared by all hosts in the cluster, the ELIM only
needs to be started on the master host. If the Verilog licenses can only be
accessed by some hosts in the cluster, specify the LOCATION field of the
ResourceMap section as ([hostA hostB hostC ...]). In this case an ELIM
is only started on hostA.

Submitting jobs The users would submit jobs requiring verilog licenses as follows:

% bsub -R 'rusage[verilog=1:duration=1]' myprog

Configuring a dedicated queue for floating licenses
Whether you run all license jobs through LSF or run jobs that use licenses that
are outside of LSF control, you can configure a dedicated queue to run jobs
requiring a floating software license.

For each job in the queue, LSF reserves a software license before dispatching
a job, and releases the license when the job finishes.

Use the bhosts -s command to display the number of licenses being reserved
by the dedicated queue.
Administering Platform LSF

Chapter 17
Managing Software Licenses with LSF
Example The following example defines a queue named q_verilog in lsb.queues
dedicated to jobs that require Verilog licenses:

Begin Queue
QUEUE_NAME = q_verilog
RES_REQ=rusage[verilog=1:duration=1]
End Queue

The queue named q_verilog contains jobs that will reserve one Verilog
license when it is started.

If the Verilog licenses are not cluster-wide, but can only be used by some
hosts in the cluster, the resource requirement string should include the
defined() tag in the select section:

select[defined(verilog)] rusage[verilog=1]

Preventing underutilization of licenses
One limitation to using a dedicated queue for licensed jobs is that if a job does
not actually use the license, then the licenses will be under-utilized. This could
happen if the user mistakenly specifies that their application needs a license,
or submits a non-licensed job to a dedicated queue.

LSF assumes that each job indicating that it requires a Verilog license will
actually use it, and simply subtracts the total number of jobs requesting
Verilog licenses from the total number available to decide whether an
additional job can be dispatched.

Use the duration keyword in the queue resource requirement specification
to release the shared resource after the specified number of minutes expires.
This prevents multiple jobs started in a short interval from over-using the
available licenses. By limiting the duration of the reservation and using the
actual license usage as reported by the ELIM, underutilization is also avoided
and licenses used outside of LSF can be accounted for.
Administering Platform LSF 227

Network Floating Licenses

228
When interactive jobs compete for licenses
In situations where an interactive job outside the control of LSF competes with
batch jobs for a software license, it is possible that a batch job, having reserved
the software license, may fail to start as its license is intercepted by an
interactive job. To handle this situation, configure job requeue by using the
REQUEUE_EXIT_VALUES parameter in a queue definition in lsb.queues. If a
job exits with one of the values in the REQUEUE_EXIT_VALUES, LSF will
requeue the job.

Example Jobs submitted to the following queue will use Verilog licenses:

Begin Queue
QUEUE_NAME = q_verilog
RES_REQ=rusage[verilog=1:duration=1]
application exits with value 99 if it fails to get license
REQUEUE_EXIT_VALUES = 99
JOB_STARTER = lic_starter
End Queue

All jobs in the queue are started by the job starter lic_starter, which checks
if the application failed to get a license and exits with an exit code of 99. This
causes the job to be requeued and LSF will attempt to reschedule it at a later
time.

lic_starter job
starter script

The lic_starter job starter can be coded as follows:

#!/bin/sh
lic_starter: If application fails with no license, exit 99,
otherwise, exit 0. The application displays
"no license" when it fails without license available.
$* 2>&1 | grep "no license"
if [$? != "0"]
then

exit 0 # string not found, application got the license
else

exit 99
fi

For more information
◆ See “Automatic Job Requeue” on page 245 for more information about

configuring job requeue

◆ See Chapter 28, “Job Starters” for more information about LSF job starters
Administering Platform LSF

C H A P T E R

18
Dispatch and Run Windows

Contents ◆ “Dispatch and Run Windows” on page 230

◆ “Run Windows” on page 231

◆ “Dispatch Windows” on page 232
Administering Platform LSF 229

Dispatch and Run Windows

230
Dispatch and Run Windows
Both dispatch and run windows are time windows that control when LSF jobs
start and run.

◆ Dispatch windows can be defined in lsb.hosts. Dispatch and run
windows can be defined in lsb.queues.

◆ Hosts can only have dispatch windows. Queues can have dispatch
windows and run windows.

◆ Both windows affect job starting; only run windows affect the stopping of
jobs.

◆ Dispatch windows define when hosts and queues are active and inactive.
It does not control job submission.

Run windows define when jobs can and cannot run. While a run window
is closed, LSF cannot start any of the jobs placed in the queue, or finish any
of the jobs already running.

◆ When a dispatch window closes, running jobs continue and finish, and no
new jobs can be dispatched to the host or from the queue. When a run
window closes, LSF suspends running jobs, but new jobs can still be
dispatched to the queue.
Administering Platform LSF

Chapter 18
Dispatch and Run Windows
Run Windows
Queues can be configured with a run window, which specifies one or more
time periods during which jobs in the queue are allowed to run. Once a run
window is configured, jobs in the queue cannot run outside of the run
window.

Jobs can be submitted to a queue at any time; if the run window is closed, the
jobs remain pending until it opens again. If the run window is open, jobs are
placed and dispatched as usual. When an open run window closes, running
jobs are suspended, and pending jobs remain pending. The suspended jobs are
resumed when the window opens again.

Configuring run windows
To configure a run window, set RUN_WINDOW in lsb.queues.

For example, to specify that the run window will be open from 4:30 a.m. to
noon, type:

RUN_WINDOW = 4:30-12:00

You can specify multiple time windows.

For more information about the syntax of time windows, see “Specifying Time
Windows” on page 145.

Viewing information about run windows
Use bqueues -l to display information about queue run windows.
Administering Platform LSF 231

Dispatch Windows

232
Dispatch Windows
Queues can be configured with a dispatch window, which specifies one or
more time periods during which jobs are accepted. Hosts can be configured
with a dispatch window, which specifies one or more time periods during
which jobs are allowed to start.

Once a dispatch window is configured, LSF cannot dispatch jobs outside of the
window. By default, no dispatch windows are configured (the windows are
always open).

Dispatch windows have no effect on jobs that have already been dispatched
to the execution host; jobs are allowed to run outside the dispatch windows,
as long as the queue run window is open.

Queue-level Each queue can have a dispatch window. A queue can only dispatch jobs
when the window is open.

You can submit jobs to a queue at any time; if the queue dispatch window is
closed, the jobs remain pending in the queue until the dispatch window opens
again.

Host-level Each host can have dispatch windows. A host is not eligible to accept jobs
when its dispatch windows are closed.

Configuring dispatch windows
Dispatch windows can be defined for both queues and hosts. The default is no
restriction, or always open.

Configuring host
dispatch windows

To configure dispatch windows for a host, set DISPATCH_WINDOW in
lsb.hosts and specify one or more time windows. If no host dispatch
window is configured, the window is always open.

Configuring
queue dispatch

windows

To configure dispatch windows for queues, set DISPATCH_WINDOW in
lsb.queues and specify one or more time windows. If no queue dispatch
window is configured, the window is always open.

Displaying dispatch windows

Displaying queue
dispatch windows

Use bqueues -l to display queue dispatch windows.

Displaying host
dispatch windows

Use bhosts -l to display host dispatch windows.
Administering Platform LSF

C H A P T E R

19
Job Dependencies

Contents ◆ “Job Dependency Scheduling” on page 234

◆ “Dependency Conditions” on page 236
Administering Platform LSF 233

Job Dependency Scheduling

234
Job Dependency Scheduling

About job dependency scheduling
Sometimes, whether a job should start depends on the result of another job.
For example, a series of jobs could process input data, run a simulation,
generate images based on the simulation output, and finally, record the images
on a high-resolution film output device. Each step can only be performed after
the previous step finishes successfully, and all subsequent steps must be
aborted if any step fails.

Some jobs may not be considered complete until some post-job processing is
performed. For example, a job may need to exit from a post-execution job
script, clean up job files, or transfer job output after the job completes.

In LSF, any job can be dependent on other LSF jobs. When you submit a job,
you use bsub -w to specify a dependency expression, usually based on the
job states of preceding jobs.

LSF will not place your job unless this dependency expression evaluates to
TRUE. If you specify a dependency on a job that LSF cannot find (such as a
job that has not yet been submitted), your job submission fails.

Specifying a job dependency
To specify job dependencies, use bsub -w to specify a dependency expression
for the job.

Syntax bsub -w 'dependency_expression'

The dependency expression is a logical expression composed of one or more
dependency conditions. For syntax of individual dependency conditions, see
“Dependency Conditions” on page 236.

To make dependency expression of multiple conditions, use the following
logical operators:

❖ && (AND)

❖ || (OR)

❖ ! (NOT)

◆ Use parentheses to indicate the order of operations, if necessary.

◆ Enclose the dependency expression in single quotes (') to prevent the shell
from interpreting special characters (space, any logic operator, or
parentheses). If you use single quotes for the dependency expression, use
double quotes for quoted items within it, such as job names.

◆ Job names specify only your own jobs, unless you are an LSF administrator.

◆ Use double quotes (") around job names that begin with a number.
Administering Platform LSF

Chapter 19
Job Dependencies
◆ In Windows, enclose the dependency expression in double quotes (")
when the expression contains a space. For example:

❖ bsub -w "exit(678, 0)" requires double quotes in Windows.

❖ bsub -w 'exit(678,0)' can use single quotes in Windows.

◆ In the job name, specify the wildcard character (*) at the end of a string, to
indicate all jobs whose name begins with the string. For example, if you
use jobA* as the job name, it specifies jobs named jobA, jobA1,
jobA_test, jobA.log, etc.

Multiple jobs with the same name
By default, if you use the job name to specify a dependency condition, and
more than one of your jobs has the same name, all of your jobs that have that
name must satisfy the test.

To change this behavior, set JOB_DEP_LAST_SUB in lsb.params to 1. Then,
if more than one of your jobs has the same name, the test is done on the one
submitted most recently.
Administering Platform LSF 235

Dependency Conditions

236
Dependency Conditions
The following dependency conditions can be used with any job:

◆ done(job_ID | "job_name")

◆ ended(job_ID | "job_name")

◆ exit(job_ID [,[op] exit_code])

◆ exit("job_name"[,[op] exit_code])

◆ external(job_ID | "job_name", "status_text")

◆ job_ID | "job_name"

◆ post_done(job_ID | "job_name")

◆ post_err(job_ID | "job_name")

◆ started(job_ID | "job_name")

done

Syntax done(job_ID | "job_name")

Description The job state is DONE.

ended

Syntax ended(job_ID | "job_name")

Description The job state is EXIT or DONE.

exit

Syntax exit(job_ID | "job_name"[,[operator] exit_code])

where operator represents one of the following relational operators:

◆ >

◆ >=

◆ <

◆ <=

◆ ==

◆ !=

Description The job state is EXIT, and the job’s exit code satisfies the comparison test.

If you specify an exit code with no operator, the test is for equality (== is
assumed).

If you specify only the job, any exit code satisfies the test.
Administering Platform LSF

Chapter 19
Job Dependencies
Examples ◆ exit (myjob)

The job named myjob is in the EXIT state, and it does not matter what its
exit code was.

◆ exit (678,0)

The job with job ID 678 is in the EXIT state, and terminated with exit code
0.

◆ exit ("678",!=0)

The job named 678 is in the EXIT state, and terminated with any non-zero
exit code.

external

Syntax external(job_ID | "job_name", "status_text")

Specify the first word of the job status or message description (no spaces).
Only the first word is evaluated.

Description The job has the specified job status, or the text of the job’s status begins with
the specified word.

Job ID or job name

Syntax job_ID | "job_name"

Description If you specify a job without a dependency condition, the test is for the DONE
state (LSF assumes the “done” dependency condition by default).

post_done

Syntax post_done(job_ID | "job_name")

Description The job state is POST_DONE (the post-processing of specified job has
completed without errors).

post_err

Syntax post_err(job_ID | "job_name")

Description The job state is POST_ERR (the post-processing of specified job has completed
with errors).
Administering Platform LSF 237

Dependency Conditions

238
started

Syntax started(job_ID | "job_name")

Description The job state is:

◆ RUN, DONE, or EXIT

◆ PEND or PSUSP, and the job has a pre-execution command (bsub -E) that
is running

Advanced dependency conditions

Job arrays If you use job arrays, you can specify additional dependency conditions that
only work with job arrays.

To use other dependency conditions with array jobs, specify elements of a job
array in the usual way.

Job dependency examples
◆ The simplest kind of dependency expression consists of only one

dependency condition. For example, if JobA depends on the successful
completion of JobB, submit the job as shown:
bsub -J "JobA" -w 'done(JobB)' command

◆ -w 'done(312) && (started(Job2)||exit("99Job"))'

The submitted job will not start until the job with the job ID of 312 has
completed successfully, and either the job named Job2 has started, or the
job named 99Job has terminated abnormally.

◆ -w '"210"'

The submitted job will not start unless the job named 210 is finished. The
numeric job name should be doubly quoted, since the UNIX shell treats
-w "210" the same as -w 210, which would evaluate the job with the job
ID of 210.
Administering Platform LSF

C H A P T E R

20
Job Priorities

Contents ◆ “User-Assigned Job Priority” on page 240

◆ “Automatic Job Priority Escalation” on page 242
Administering Platform LSF 239

User-Assigned Job Priority

240
User-Assigned Job Priority
User-assigned job priority provides controls that allow users to order their jobs
in a queue. Job order is the first consideration to determine job eligibility for
dispatch. Jobs are still subject to all scheduling policies regardless of job
priority. Jobs with the same priority are ordered first come first served.

The job owner can change the priority of their own jobs. LSF and queue
administrators can change the priority of all jobs in a queue.

User-assigned job priority is enabled for all queues in your cluster, and can be
configured with automatic job priority escalation to automatically increase the
priority of jobs that have been pending for a specified period of time.

Considerations The btop and bbot commands move jobs relative to other jobs of the same
priority. These commands do not change job priority.

In this section ◆ “Configuring job priority” on page 240

◆ “Specifying job priority” on page 241

◆ “Viewing job priority information” on page 241

Configuring job priority
To configure user-assigned job priority edit lsb.params and define
MAX_USER_PRIORITY. This configuration applies to all queues in your cluster.

Use bparams -l to display the value of MAX_USER_PRIORITY.

Syntax MAX_USER_PRIORITY=max_priority

Where:

max_priority

Specifies the maximum priority a user can assign to a job. Valid values are
positive integers. Larger values represent higher priority; 1 is the lowest.

LSF and queue administrators can assign priority beyond max_priority.

Example MAX_USER_PRIORITY=100

Specifies that 100 is the maximum job priority that can be specified by a user.
Administering Platform LSF

Chapter 20
Job Priorities
Specifying job priority
Job priority is specified at submission using bsub and modified after
submission using bmod. Jobs submitted without a priority are assigned the
default priority of MAX_USER_PRIORITY/2.

Syntax bsub -sp priority
bmod [-sp priority | -spn] job_ID

Where:

◆ -sp priority

Specifies the job priority. Valid values for priority are any integers between
1 and MAX_USER_PRIORITY (displayed by bparams -l). Invalid job
priorities are rejected.

LSF and queue administrators can specify priorities beyond
MAX_USER_PRIORITY.

◆ -spn

Sets the job priority to the default priority of MAX_USER_PRIORITY/2
(displayed by bparams -l).

Viewing job priority information
Use the following commands to view job history, the current status and system
configurations:

bhist -l job_ID Displays the history of a job including changes in job priority.

bjobs -l [job_ID] Displays the current job priority and the job priority at submission time. Job
priorities are changed by the job owner, LSF and queue administrators, and
automatically when automatic job priority escalation is enabled.

bparams -l Displays values for:

◆ The maximum user priority, MAX_USER_PRIORITY

◆ The default submission priority, MAX_USER_PRIORITY/2

◆ The value and frequency used for automatic job priority escalation,
JOB_PRIORITY_OVER_TIME
Administering Platform LSF 241

Automatic Job Priority Escalation

242
Automatic Job Priority Escalation
Automatic job priority escalation automatically increases job priority of jobs
that have been pending for a specified period of time. User-assigned job
priority (see “User-Assigned Job Priority” on page 240) must also be
configured.

As long as a job remains pending, LSF will automatically increase the job
priority beyond the maximum priority specified by MAX_USER_PRIORITY. Job
priority will not be increased beyond the value of max_int on your system.

Configuring job priority escalation
To configure job priority escalation edit lsb.params and define
JOB_PRIORITY_OVER_TIME. User-assigned job priority must also be
configured.

Use bparams -l to display the values of JOB_PRIORITY_OVER_TIME.

Syntax JOB_PRIORITY_OVER_TIME=increment/interval

Where:

◆ increment

Specifies the value used to increase job priority every interval minutes.
Valid values are positive integers.

◆ interval

Specifies the frequency, in minutes, to increment job priority. Valid values
are positive integers.

Example JOB_PRIORITY_OVER_TIME=3/20

Specifies that every 20 minute interval increment to job priority of pending
jobs by 3.
Administering Platform LSF

C H A P T E R

21
Job Requeue and Job Rerun

Contents ◆ “About Job Requeue” on page 244

◆ “Automatic Job Requeue” on page 245

◆ “Reverse Requeue” on page 246

◆ “Exclusive Job Requeue” on page 247

◆ “User-Specified Job Requeue” on page 248

◆ “Automatic Job Rerun” on page 249
Administering Platform LSF 243

About Job Requeue

244
About Job Requeue
A networked computing environment is vulnerable to any failure or temporary
conditions in network services or processor resources. For example, you might
get NFS stale handle errors, disk full errors, process table full errors, or network
connectivity problems. Your application can also be subject to external
conditions such as a software license problems, or an occasional failure due to
a bug in your application.

Such errors are temporary and probably will happen at one time but not
another, or on one host but not another. You might be upset to learn all your
jobs exited due to temporary errors and you did not know about it until 12
hours later.

LSF provides a way to automatically recover from temporary errors. You can
configure certain exit values such that in case a job exits with one of the values,
the job will be automatically requeued as if it had not yet been dispatched. This
job will then be retried later. It is also possible for you to configure your queue
such that a requeued job will not be scheduled to hosts on which the job had
previously failed to run.
Administering Platform LSF

Chapter 21
Job Requeue and Job Rerun
Automatic Job Requeue

About automatic job requeue
You can configure a queue to automatically requeue a job if it exits with a
specified exit value.

◆ The job is requeued to the head of the queue from which it was
dispatched, unless the LSB_REQUEUE_TO_BOTTOM parameter in
lsf.conf is set.

◆ When a job is requeued, LSF does not save the output from the failed run.

◆ When a job is requeued, LSF does not notify the user by sending mail.

◆ A job terminated by a signal is not requeued.

Configuring automatic job requeue
To configure automatic job requeue, set REQUEUE_EXIT_VALUES in the queue
definition (lsb.queues) and specify the exit codes that will cause the job to
be requeued.

Example Begin Queue
...
REQUEUE_EXIT_VALUES = 99 100
...
End Queue

This configuration enables jobs that exit with 99 or 100 to be requeued.
Administering Platform LSF 245

Reverse Requeue

246
Reverse Requeue

About reverse requeue
By default, if you use automatic job requeue, jobs are requeued to the head of
a queue. You can have jobs requeued to the bottom of a queue instead. The
job priority does not change.

Configuring reverse requeue
You must already use automatic job requeue (REQUEUE_EXIT_VALUES in
lsb.queues).

To configure reverse requeue:

1 Set LSB_REQUEUE_TO_BOTTOM in lsf.conf to 1.

2 Reconfigure the cluster with the commands lsadmin reconfig and
badmin reconfig.

Example LSB_REQUEUE_TO_BOTTOM=1
Administering Platform LSF

Chapter 21
Job Requeue and Job Rerun
Exclusive Job Requeue

About exclusive job requeue
You can configure automatic job requeue so that a failed job is not rerun on
the same host.

Limitations ◆ If mbatchd is restarted, this feature might not work properly, since LSF
forgets which hosts have been excluded. If a job ran on a host and exited
with an exclusive exit code before mbatchd was restarted, the job could
be dispatched to the same host again after mbatchd is restarted.

◆ Exclusive job requeue does not work for MultiCluster jobs or parallel jobs

◆ A job terminated by a signal is not requeued

Configuring exclusive job requeue
Set REQUEUE_EXIT_VALUES in the queue definition (lsb.queues) and define
the exit code using parentheses and the keyword EXCLUDE, as shown:

EXCLUDE(exit_code...)

When a job exits with any of the specified exit codes, it will be requeued, but
it will not be dispatched to the same host again.

Example Begin Queue
...
REQUEUE_EXIT_VALUES=30 EXCLUDE(20)
HOSTS=hostA hostB hostC
...
End Queue

A job in this queue can be dispatched to hostA, hostB or hostC.

If a job running on hostA exits with value 30 and is requeued, it can be
dispatched to hostA, hostB, or hostC. However, if a job running on hostA
exits with value 20 and is requeued, it can only be dispatched to hostB or
hostC.

If the job runs on hostB and exits with a value of 20 again, it can only be
dispatched on hostC. Finally, if the job runs on hostC and exits with a value
of 20, it cannot be dispatched to any of the hosts, so it will be pending forever.
Administering Platform LSF 247

User-Specified Job Requeue

248
User-Specified Job Requeue

About user-specified job requeue
You can use brequeue to kill a job and requeue it. When the job is requeued,
it is assigned the PEND status and the job’s new position in the queue is after
other jobs of the same priority.

Requeuing a job
To requeue one job, use brequeue.

◆ You can only use brequeue on running (RUN), user-suspended (USUSP),
or system-suspended (SSUSP) jobs.

◆ Users can only requeue their own jobs. Only root and LSF administrator
can requeue jobs submitted by other users.

◆ You cannot use brequeue on interactive batch jobs

Example % brequeue 109

LSF kills the job with job ID 109, and requeues it in the PEND state. If job 109
has a priority of 4, it is placed after all the other jobs with the same priority.

Example % brequeue -u User5 45 67 90

LSF kills and requeues 3 jobs belonging to User5. The jobs have the job IDs
45, 67, and 90.
Administering Platform LSF

Chapter 21
Job Requeue and Job Rerun
Automatic Job Rerun

Job requeue vs. job rerun
Automatic job requeue occurs when a job finishes and has a specified exit code
(usually indicating some type of failure).

Automatic job rerun occurs when the execution host becomes unavailable
while a job is running. It does not occur if the job itself fails.

About job rerun
When a job is rerun or restarted, it is first returned to the queue from which it
was dispatched with the same options as the original job. The priority of the
job is set sufficiently high to ensure the job gets dispatched before other jobs
in the queue. The job uses the same job ID number. It is executed when a
suitable host is available, and an email message is sent to the job owner
informing the user of the restart.

Automatic job rerun can be enabled at the job level, by the user, or at the
queue level, by the LSF administrator. If automatic job rerun is enabled, the
following conditions cause LSF to rerun the job:

◆ The execution host becomes unavailable while a job is running

◆ The system fails while a job is running

When LSF reruns a job, it returns the job to the submission queue, with the
same job ID. LSF dispatches the job as if it was a new submission, even if the
job has been checkpointed.

Execution host
fails

If the execution host fails, LSF dispatches the job to another host. You receive
a mail message informing you of the host failure and the requeuing of the job.

LSF System fails If the LSF system fails, LSF requeues the job when the system restarts.

Configuring queue-level job rerun
To enable automatic job rerun at the queue level, set RERUNNABLE in
lsb.queues to yes.

Example RERUNNABLE = yes

Submitting a rerunnable job
To enable automatic job rerun at the job level, use bsub -r.
Administering Platform LSF 249

Automatic Job Rerun

250
 Administering Platform LSF

C H A P T E R

22
Job Checkpoint, Restart, and

Migration

Contents ◆ “Checkpointing Jobs” on page 252

◆ “Approaches to Checkpointing” on page 253

◆ “Creating Custom echkpnt and erestart for Application-level
Checkpointing” on page 254

◆ “Restarting Checkpointed Jobs” on page 263

◆ “Migrating Jobs” on page 264
Administering Platform LSF 251

Checkpointing Jobs

252
Checkpointing Jobs
Checkpointing a job involves capturing the state of an executing job, the data
necessary to restart the job, and not wasting the work done to get to the current
stage. The job state information is saved in a checkpoint file. There are many
reasons why you would want to checkpoint a job.

Fault tolerance
To provide job fault tolerance, checkpoints are taken at regular intervals
(periodically) during the job’s execution. If the job is killed or migrated, or if
the job fails for a reason other than host failure, the job can be restarted from
its last checkpoint and not waste the efforts to get it to its current stage.

Migration
Checkpointing enables a migrating job to make progress rather than restarting
the job from the beginning. Jobs can be migrated when a host fails or when a
host becomes unavailable due to load.

Load balancing
Checkpointing a job and restarting it (migrating) on another host provides load
balancing by moving load (jobs) from a heavily loaded host to a lightly loaded
host.

In this section ◆ “Approaches to Checkpointing” on page 253

◆ “Checkpointing a Job” on page 257
Administering Platform LSF

Chapter 22
Job Checkpoint, Restart, and Migration
Approaches to Checkpointing
LSF provides support for most checkpoint and restart implementations through
uniform interfaces, echkpnt and erestart. All interaction between LSF and
the checkpoint implementations are handled by these commands. See the
echkpnt(8) and erestart(8) man pages for more information.

Checkpoint and restart implementations are categorized based on the facility
that performs the checkpoint and the amount of knowledge an executable has
of the checkpoint. Commonly, checkpoint and restart implementations are
grouped as kernel-level, user-level, and application-level.

Kernel-level checkpointing
Kernel-level checkpointing is provided by the operating system and can be
applied to arbitrary jobs running on the system. This approach is transparent
to the application, there are no source code changes and no need to re-link
your application with checkpoint libraries.

To support kernel-level checkpoint and restart, LSF provides an echkpnt and
erestart executable that invokes OS specific system calls.

Kernel-level checkpointing is currently supported on:

◆ Cray UNICOS

◆ IRIX 6.4 and later

◆ NEC SX-4 and SX-5

See the chkpnt(1) man page on Cray systems and the cpr(1) man page on
IRIX systems for the limitations of their checkpoint implementations.

User-level checkpointing
LSF provides a method to checkpoint jobs on systems that do not support
kernel-level checkpointing called user-level checkpointing. To implement
user-level checkpointing, you must have access to your applications object files
(.o files), and they must be re-linked with a set of libraries provided by LSF in
LSF_LIBDIR. This approach is transparent to your application, its code does not
have to be changed and the application does not know that a checkpoint and
restart has occurred.

Application-level checkpointing
The application-level approach applies to those applications which are
specially written to accommodate the checkpoint and restart. The application
writer must also provide an echkpnt and erestart to interface with LSF. For
more details see the echkpnt(8) and erestart(8) man pages. The
application checkpoints itself either periodically or in response to signals sent
by other processes. When restarted, the application itself must look for the
checkpoint files and restore its state.
Administering Platform LSF 253

Creating Custom echkpnt and erestart for Application-level Checkpointing

254
Creating Custom echkpnt and erestart for
Application-level Checkpointing

Different applications may have different checkpointing implementations and
custom echkpnt and erestart programs.

You can write your own echkpnt and erestart programs to checkpoint your
specific applications and tell LSF which program to use for which application.

◆ “Writing custom echkpnt and erestart programs” on page 254

◆ “Configuring LSF to recognize the custom echkpnt and erestart” on
page 256

Writing custom echkpnt and erestart programs

Programming
language

You can write your own echkpnt and erestart interfaces in C or Fortran.

Name Assign the name echkpnt.method_name and erestart.method_name,
where method_name is the name that identifies this is the program for a
specific application.

For example, if your custom echkpnt is for my_app, you would have:
echkpnt.my_app, erestart.my_app.

Location Place echkpnt.method_name and erestart.method_name in
LSF_SERVERDIR or specify a different directory with
LSB_ECHKPNT_METHOD_DIR as an environment variable or set in lsf.conf.

The method name (LSB_ECHKPNT_METHOD in lsf.conf or as an
environment variable) and location (LSB_ECHKPNT_METHOD_DIR)
combination must be unique in the cluster. For example, you may have two
echkpnt applications with the same name such as echkpnt.mymethod but
what differentiates them is the different directories defined with
LSB_ECHKPNT_METHOD_DIR.

Supported syntax
for echkpnt

Your echkpnt.method_name must recognize commands in the following
syntax as these are the options used by echkpnt to communicate with your
echkpnt.method_name:

echkpnt [-c] [-f] [-k | -s] [-d checkpoint_dir] [-x] process_group_ID

For more details on echkpnt syntax, see the echkpnt(8) man page.

Supported syntax
for erestart

Your erestart.method_name must recognize commands in the following
syntax as these are the options used by erestart to communicate with your
erestart.method_name .

erestart [-c] [-f] checkpoint_dir
Administering Platform LSF

Chapter 22
Job Checkpoint, Restart, and Migration
For more details, see the erestart(8) man page.

Return values for echkpnt.method_name
If echkpnt.method_name is able to successfully checkpoint the job, it exits
with a 0. Non-zero values indicate job checkpoint failed.

stderr and stdout are ignored by LSF. You can save these to a file by setting
LSB_ECHKPNT_KEEP_OUTPUT=y in lsf.conf or as an environment
variable.

Return values for erestart.method_name
erestart.method_name creates the file
checkpoint_dir/$LSB_JOBID/.restart_cmd and writes in this file the
command to restart the job or process group in the form:

LSB_RESTART_CMD=restart_command

For example, if the command to restart a job is my_restart my_job, the
erestart.method_name writes to the .restart_cmd file:

LSB_RESTART_CMD=my_restart my_job

erestart then reads the .restart_cmd file and uses the command specified
with LSB_RESTART_CMD as the command to restart the job.

You have the choice of writing to the file or not. Return a 0 if
erestart.method_name succeeds in writing the job restart command to the
file checkpoint_dir/$LSB_JOBID/.restart_cmd, or if it purposefully
writes nothing to the file. Non-zero values indicate that
erestart.method_name was not able to restart the job.

For user-level checkpointing, erestart.method_name must collect the exit
code from the job. Then, erestart.method_name must exit with the same
exit code as the job. Otherwise, the job’s exit status is not reported correctly to
LSF. Kernel-level checkpointing works differently and does not need this
information from erestart.method_name to restart the job.

erestart.method_name
◆ Must have access to the original command line. It is important the

erestart.method_name have access to the original command line used
to start the job.

◆ erestart.method_name must return, it should not run the application to
restart the job.

Note Any information echkpnt writes to stderr is considered by sbatchd as an
echkpnt failure. However, not all errors are fatal. If the chkpnt explicitly
writes to stdout or stderr "Checkpoint done", sbatchd assumes echkpnt
has succeeded.
Administering Platform LSF 255

Creating Custom echkpnt and erestart for Application-level Checkpointing

256
Configuring LSF to recognize the custom echkpnt and erestart
You can set the following parameters in lsf.conf or as environment
variables. If set in lsf.conf, these parameters apply globally to the cluster and
will be the default values. Parameters specified as environment variables
override the parameters specified in lsf.conf.

If you set parameters in lsf.conf, reconfigure your cluster with lsadmin
reconfig and badmin reconfig so that changes take effect.

1 Set LSB_ECHKPNT_METHOD=method_name in lsf.conf or as an
environment variable

OR

When you submit the job, specify the checkpoint and restart method. For
example:

bsub -k "mydir method=myapp" job1

2 Copy your echkpnt.method_name and erestart.method_name to
LSF_SERVERDIR.

OR

If you want to specify a different directory than LSF_SERVERDIR, in
lsf.conf or as an environment variable set
LSB_ECHKPNT_METHOD_DIR= absolute path to the directory in which
your echkpnt.method_name and erestart.method_name are located.

3 (Optional)

To save standard error and standard output messages for echkpnt.
method_name and erestart.method_name set
LSB_ECHKPNT_KEEP_OUTPUT=y in lsf.conf or as an environment
variable.

The stdout and stderr output generated by echkpnt. method_name
will be redirected to:

❖ checkpoint_dir/$LSB_JOBID/echkpnt.out
❖ checkpoint_dir/$LSB_JOBID/echkpnt.err

The stdout and stderr output generated by erestart.method_name
will be redirected to:

❖ checkpoint_dir/$LSB_JOBID/erestart.out
❖ checkpoint_dir/$LSB_JOBID/erestart.err

Otherwise, if LSB_ECHKPNT_KEEP_OUTPUT is not defined, standard
error and output will be redirected to /dev/null and discarded.
Administering Platform LSF

Chapter 22
Job Checkpoint, Restart, and Migration
Checkpointing a Job
Before LSF can checkpoint a job, it must be made checkpointable. LSF provides
automatic and manual controls to make jobs checkpointable and to checkpoint
jobs. When working with checkpointable jobs, a checkpoint directory must
always be specified. Optionally, a checkpoint period can be specified to enable
periodic checkpointing.

When a job is checkpointed, LSF performs the following actions:

1 Stops the job if its running

2 Creates the checkpoint file in the checkpoint directory

3 Restarts the job

Prerequisites LSF can create a checkpoint for any eligible job. Review the discussion about
“Approaches to Checkpointing” on page 253 to determine if your application
and environment are suitable for checkpointing.

In this section ◆ “The Checkpoint Directory” on page 258

◆ “Making Jobs Checkpointable” on page 259

◆ “Manually Checkpointing Jobs” on page 260

◆ “Enabling Periodic Checkpointing” on page 261

◆ “Automatically Checkpointing Jobs” on page 262
Administering Platform LSF 257

The Checkpoint Directory

258
The Checkpoint Directory
A checkpoint directory must be specified for every checkpointable job and is
used to store the files to restart a job. The directory must be writable by the
job owner. To restart the job on another host (job migration), the directory
must be accessible by both hosts. LSF does not delete the checkpoint files;
checkpoint file maintenance is the user’s responsibility.

LSF writes the checkpoint file in a directory named with the job ID of the job
being checkpointed under the checkpoint directory. This allows LSF to
checkpoint multiple jobs to the same checkpoint directory. For example, when
you specify a checkpoint directory called my_dir and when job 123 is
checkpointed, LSF will save the checkpoint file in:

my_dir/123/

When LSF restarts a checkpointed job, it renames the checkpoint directory
using the job ID of the new job and creates a symbolic link from the old
checkpoint directory to the new one. For example, if a job with job ID 123 is
restarted with job ID 456 the checkpoint directory will be renamed to:

my_dir/456/
Administering Platform LSF

Chapter 22
Job Checkpoint, Restart, and Migration
Making Jobs Checkpointable
Making a job checkpointable involves specifying the location of a checkpoint
directory to LSF. This can be done manually on the command line or
automatically through configuration.

Manually
Manually making a job checkpointable involves specifying the checkpoint
directory on the command line. LSF will create the directory if it does not exist.
A job can be made checkpointable at job submission or after submission.

At job submission Use the -k "checkpoint_dir" option of bsub to specify the checkpoint
directory for a job at submission. For example, to specify my_dir as the
checkpoint directory for my_job:

% bsub -k "my_dir" my_job
Job <123> is submitted to default queue <default>.

After job
submission

Use the -k "checkpoint_dir" option of bmod to specify the checkpoint
directory for a job after submission. For example, to specify my_dir as the
checkpoint directory for a job with job ID 123:

% bmod -k "my_dir" 123
Parameters of job <123> are being changed

Automatically
Automatically making a job checkpointable involves submitting the job to a
queue that is configured for checkpointable jobs. To configure a queue, edit
lsb.queues and specify the checkpoint directory for the CHKPNT parameter
on a queue. The checkpoint directory must already exist, LSF will not create
the directory.

For example, to configure a queue for checkpointable jobs using a directory
named my_dir:

Begin Queue
...
CHKPNT=my_dir
DESCRIPTION = Make jobs checkpointable using "my_dir"
...

End Queue
Administering Platform LSF 259

Manually Checkpointing Jobs

260
Manually Checkpointing Jobs
LSF provides the bchkpnt command to manually checkpoint jobs. LSF can
only perform a checkpoint for checkpointable jobs as described in “Making
Jobs Checkpointable” on page 259. For example, to checkpoint a job with job
ID 123:

% bchkpnt 123
Job <123> is being checkpointed

Interactive jobs (bsub -I) cannot be checkpointed.

Checkpointing and killing a job
By default, after a job has been successfully checkpointed, it continues to run.
Use the bchkpnt -k command to kill the job after the checkpoint file has been
created. Killing the job ensures the job does not do any processing or I/O after
the checkpoint. For example, to checkpoint and kill a job with job ID 123:

% bchkpnt -k 123
Job <123> is being checkpointed
Administering Platform LSF

Chapter 22
Job Checkpoint, Restart, and Migration
Enabling Periodic Checkpointing
Periodic checkpointing involves creating a checkpoint file at regular time
intervals during the execution of your job. LSF provides the ability to enable
periodic checkpointing manually on the command line and automatically
through configuration. Automatic periodic checkpointing is discussed in
“Automatically Checkpointing Jobs” on page 262. LSF can only perform a
checkpoint for checkpointable jobs as described in “Making Jobs
Checkpointable” on page 259.

Manually enabling periodic checkpointing involves specifying a checkpoint
period in minutes.

At job submission LSF uses the -k "checkpoint_dir checkpoint_period" option of bsub to
enable periodic checkpointing at job submission. For example, to periodically
checkpoint my_job every 2 hours (120 minutes):

% bsub -k "my_dir 120" my_job
Job <123> is submitted to default queue <default>.

After job
submission

LSF uses the -p period option of bchkpnt to enable periodic checkpointing
after submission. When a checkpoint period is specified after submission, LSF
checkpoints the job immediately then checkpoints it again after the specified
period of time. For example, to periodically checkpoint a job with job ID 123
every 2 hours (120 minutes):

% bchkpnt -p 120 123
Job <123> is being checkpointed

You can also use the -p option of bchkpnt to change a checkpoint period. For
example, to change the checkpoint period of a job with job ID 123 to every 4
hours (240 minutes):

% bchkpnt -p 240 123
Job <123> is being checkpointed

Disabling periodic checkpointing
To disable periodic checkpointing, specify a period of 0 (zero). For example,
to disable periodic checkpointing for a job with job ID 123:

% bchkpnt -p 0 123
Job <123> is being checkpointed
Administering Platform LSF 261

Automatically Checkpointing Jobs

262
Automatically Checkpointing Jobs
Automatically checkpointing jobs involves submitting a job to a queue that is
configured for periodic checkpointing. To configure a queue, edit lsb.queues
and specify a checkpoint directory and a checkpoint period for the CHKPNT
parameter for a queue. The checkpoint directory must already exist, LSF will
not create the directory. The checkpoint period is specified in minutes. All jobs
submitted to the queue will be automatically checkpointed. For example, to
configure a queue to periodically checkpoint jobs every 4 hours (240 minutes)
to a directory named my_dir:

Begin Queue
...
CHKPNT=my_dir 240
DESCRIPTION=Auto chkpnt every 4 hrs (240 min) to my_dir
...

End Queue

All jobs submitted to a queue configured for checkpointing can also be
checkpointed using bchkpnt. Jobs submitted and modified using -k, -r, -p,
and -kn options override queue configured options.
Administering Platform LSF

Chapter 22
Job Checkpoint, Restart, and Migration
Restarting Checkpointed Jobs
LSF can restart a checkpointed job on a host other than the original execution
host using the information saved in the checkpoint file to recreate the
execution environment. Only jobs that have been checkpointed successfully
can be restarted from a checkpoint file. When a job is restarted, LSF performs
the following actions:

1 LSF re-submits the job to its original queue as a new job and a new job ID
is assigned

2 When a suitable host is available, the job is dispatched

3 The execution environment is recreated from the checkpoint file

4 The job is restarted from its last checkpoint.

This can be done manually from the command line, automatically through
configuration, and when a job is migrated.

Requirements
LSF can restart a job from its last checkpoint on the execution host, or on
another host if the job is migrated. To restart a job on another host, both hosts
must:

◆ Be binary compatible

◆ Run the same dot version of the operating system. Unpredictable results
may occur if both hosts are not running the exact same OS version.

◆ Have access to the executable

◆ Have access to all open files (LSF must locate them with an absolute path
name)

◆ Have access to the checkpoint file

Manually restarting jobs
Use the brestart command to manually restart a checkpointed job. To restart
a job from its last checkpoint, specify the checkpoint directory and the job ID
of the checkpointed job. For example, to restart a checkpointed job with job
ID 123 from checkpoint directory my_dir:

% brestart my_dir 123
Job <456> is submitted to default queue <default>

The brestart command allows you to change many of the original
submission options. For example, to restart a checkpointed job with job ID 123
from checkpoint directory my_dir and have it start from a queue named
priority:

% brestart -q priority my_dir 123
Job <456> is submitted to queue <priority>
Administering Platform LSF 263

Migrating Jobs

264
Migrating Jobs
Migration is the process of moving a checkpointable or rerunnable job from
one host to another host.

Checkpointing enables a migrating job to make progress by restarting it from
its last checkpoint. Rerunnable non-checkpointable jobs are restarted from the
beginning. LSF provides the ability to manually migrate jobs from the
command line and automatically through configuration. When a job is
migrated, LSF performs the following actions:

1 Stops the job if it is running

2 Checkpoints the job if it is checkpointable

3 Kills the job on the current host

4 Restarts or reruns the job on the next available host, bypassing all pending
jobs

Requirements
To migrate a checkpointable job to another host, both hosts must:

◆ Be binary compatible

◆ Run the same dot version of the operating system. Unpredictable results
may occur if both hosts are not running the exact same OS version.

◆ Have access to the executable

◆ Have access to all open files (LSF must locate them with an absolute path
name)

◆ Have access to the checkpoint file

Manually migrating jobs
Use the bmig command to manually migrate jobs. Any checkpointable or
rerunnable job can be migrated. Jobs can be manually migrated by the job
owner, queue administrator, and LSF administrator. For example, to migrate a
job with job ID 123:

% bmig 123
Job <123> is being migrated

% bhist -l 123
Job Id <123>, User <user1>, Command <my_job>
Tue Feb 29 16:50:27: Submitted from host <hostA> to Queue <default>, C
WD <$HOME/tmp>, Checkpoint directory <chkpnt_dir/123>;

Tue Feb 29 16:50:28: Started on <hostB>, Pid <4705>;
Tue Feb 29 16:53:42: Migration requested;
Tue Feb 29 16:54:03: Migration checkpoint initiated (actpid 4746);
Tue Feb 29 16:54:15: Migration checkpoint succeeded (actpid 4746);
Tue Feb 29 16:54:15: Pending: Migrating job is waiting for reschedule;
Tue Feb 29 16:55:16: Started on <hostC>, Pid <10354>.

Summary of time in seconds spent in various states by Tue Feb 29 16:57:26
PEND PSUSP RUN USUSP SSUSP UNKWN TOTAL
62 0 357 0 0 0 419
Administering Platform LSF

Chapter 22
Job Checkpoint, Restart, and Migration
Automatically Migrating Jobs
Automatic job migration works on the premise that if a job is suspended
(SSUSP) for an extended period of time, due to load conditions or any other
reason, the execution host is heavily loaded. To allow the job to make progress
and to reduce the load on the host, a migration threshold is configured. LSF
allows migration thresholds to be configured for queues and hosts. The
threshold is specified in minutes.

When configured on a queue, the threshold will apply to all jobs submitted to
the queue. When defined at the host level, the threshold will apply to all jobs
running on the host. When a migration threshold is configured on both a
queue and host, the lower threshold value is used. If the migration threshold
is configured to 0 (zero), the job will be migrated immediately upon
suspension (SSUSP).

You can use bmig at anytime to override a configured threshold.

Configuring
queue migration

threshold

To configure a migration threshold for a queue, edit lsb.queues and specify
a threshold for the MIG parameter. For example, to configure a queue to
migrate suspended jobs after 30 minutes:

Begin Queue
...
MIG=30 # Migration threshold set to 30 mins
DESCRIPTION=Migrate suspended jobs after 30 mins
...

End Queue

Configuring host
migration
threshold

To configure a migration threshold for a host, edit lsb.hosts and specify a
threshold for the MIG parameter for a host. For example, to configure a host
to migrate suspended jobs after 30 minutes:

Begin Host
HOST_NAME MXJ JL/U r1m pg MIG # Keywords
...
hostA 4 1 5.0 18 30
...

End Host

Requeuing migrating jobs
By default, LSF restarts or reruns a migrating job on the next available host,
bypassing all pending jobs.

You can configure LSF to requeue migrating jobs rather than immediately
restarting them. Jobs will be requeued in PEND state and ordered according to
their original submission time and priority. To requeue migrating jobs, edit
lsf.conf and set LSB_MIG2PEND=1.

Additionally, you can configure LSF to requeue migrating jobs to the bottom
of the queue by editing lsf.conf and setting LSB_MIG2PEND=1 and
LSB_REQUEUE_TO_BOTTOM=1.
Administering Platform LSF 265

Migrating Jobs

266
 Administering Platform LSF

C H A P T E R

23
Chunk Job Dispatch

Contents ◆ “About Job Chunking” on page 268

◆ “Configuring a Chunk Job Dispatch” on page 269

◆ “Submitting and Controlling Chunk Jobs” on page 271
Administering Platform LSF 267

About Job Chunking

268
About Job Chunking
LSF supports job chunking, where jobs with similar resource requirements
submitted by the same user are grouped together for dispatch. The
CHUNK_JOB_SIZE parameter in lsb.queues specifies the maximum number
of jobs allowed to be dispatched together in a chunk job.

Job chunking can have the following advantages:

◆ Reduces communication between sbatchd and mbatchd, and scheduling
overhead in mbatchd

◆ Increases job throughput in mbatchd and more balanced CPU utilization
on the execution hosts

All of the jobs in the chunk are dispatched as a unit rather than individually.
Job execution is sequential, but each chunk job member is not necessarily
executed in the order it was submitted.

Chunk job candidates
Jobs with the following characteristics are typical candidates for job chunking:

◆ Take between 1 and 2 minutes to run

◆ All require the same resource (for example a software license or a specific
amount of memory)

◆ Do not specify a beginning time (bsub -b) or termination time (bsub -t)

Running jobs with these characteristics in normal queues can under-utilize
resources because LSF spends more time scheduling and dispatching the jobs
than actually running them.

Configuring a special high-priority queue for short jobs is not desirable
because users may be tempted to send all of their jobs to this queue, knowing
that it has high priority.
Administering Platform LSF

Chapter 23
Chunk Job Dispatch
Configuring a Chunk Job Dispatch

CHUNK_JOB_SIZE (lsb.queues)
To configure a queue to dispatch chunk jobs, specify the CHUNK_JOB_SIZE
parameter in the queue definition in lsb.queues.

For example, the following configures a queue named chunk, which
dispatches up to 4 jobs in a chunk:

Begin Queue
QUEUE_NAME = chunk
PRIORITY = 50
CHUNK_JOB_SIZE = 4
End Queue

After adding CHUNK_JOB_SIZE to lsb.queues, use badmin reconfig to
reconfigure your cluster.

By default, CHUNK_JOB_SIZE is not enabled.

Chunk jobs and
job throughput

Throughput can deteriorate if the chunk job size is too big. Performance may
decrease on queues with CHUNK_JOB_SIZE greater than 30. You should
evaluate the chunk job size on your own systems for best performance.

CHUNK_JOB_DURATION (lsb.params)
If CHUNK_JOB_DURATION is set in lsb.params, jobs submitted to a chunk
job queue are only chunked if the job has a CPU limit or run limit set in the
queue (CPULIMIT or RUNLMIT) or specified at job submission (-c or -W bsub
options) that is less than or equal to the value of CHUNK_JOB_DURATION.

Jobs are not chunked if:

◆ CPU limit or a run limit is greater than the value of
CHUNK_JOB_DURATION.

or

◆ No CPU limit and no run limit are specified in the queue (CPULIMIT and
RUNLIMIT) or at job submission (-c or -W bsub options).

The value of CHUNK_JOB_DURATION is displayed by bparams -l.

After adding CHUNK_JOB_DURATION to lsb.params, use badmin
reconfig to reconfigure your cluster.

By default, CHUNK_JOB_DURATION is not enabled.
Administering Platform LSF 269

Configuring a Chunk Job Dispatch

270
Restrictions on chunk job queues
CHUNK_JOB_SIZE is ignored and jobs are not chunked for the following
queues:

◆ Interactive (INTERACTIVE = ONLY parameter)

◆ CPU limit greater than 30 minutes (CPULIMIT parameter)

If CHUNK_JOB_DURATION is set in lsb.params, the job is chunked only
if it is submitted with a CPU limit that is less than or equal to the value of
CHUNK_JOB_DURATION (bsub -c)

◆ Run limit greater than 30 minutes (RUNLIMIT parameter)

If CHUNK_JOB_DURATION is set in lsb.params, the job is chunked only
if it is submitted with a run limit that is less than or equal to the value of
CHUNK_JOB_DURATION (bsub -W)

Jobs submitted with the corresponding bsub options are not chunked; they are
dispatched individually:

◆ -I (interactive jobs)

◆ -c (jobs with CPU limit greater than 30)

◆ -W (jobs with run limit greater than 30 minutes)
Administering Platform LSF

Chapter 23
Chunk Job Dispatch
Submitting and Controlling Chunk Jobs
When a job is submitted to a queue configured with the CHUNK_JOB_SIZE
parameter, LSF attempts to place the job in an existing chunk. A job is added
to an existing chunk if it has the same characteristics as the first job in the
chunk:

◆ Submitting user

◆ Resource requirements

◆ Host requirements

◆ Queue

If a suitable host is found to run the job, but there is no chunk available with
the same characteristics, LSF creates a new chunk.

Resources reserved for any member of the chunk are reserved at the time the
chunk is dispatched and held until the whole chunk finishes running. Other
jobs requiring the same resources are not dispatched until the chunk job is
done.

For example, if all jobs in the chunk require a software license, the license is
checked out and each chunk job member uses it in turn. The license is not
released until the last chunk job member is finished running.

WAIT status
When sbatchd receives a chunk job, it will not start all member jobs at once.
A chunk job occupies a single job slot. Even if other slots are available, the
chunk job members must run one at a time in the job slot they occupy. The
remaining jobs in the chunk that are waiting to run are displayed as WAIT by
bjobs. Any jobs in WAIT status are included in the count of pending jobs by
bqueues and busers. The bhosts command shows the single job slot
occupied by the entire chunk job in the number of jobs shown in the NJOBS
column.

The bhist -l command shows jobs in WAIT status as Waiting ...

The bjobs -l command does not display a WAIT reason in the list of pending
jobs.
Administering Platform LSF 271

Submitting and Controlling Chunk Jobs

272
Controlling chunk jobs
Job controls affect the state of the members of a chunk job. You can perform
the following actions on jobs in a chunk job:

Migrating jobs with bmig will change the dispatch sequence of the chunk job
members. They will not be redispatched in the order they were originally
submitted.

Rerunnable chunk jobs
If the execution host becomes unavailable, rerunnable chunk job members are
removed from the queue and dispatched to a different execution host.

See Chapter 21, “Job Requeue and Job Rerun” for more information about
rerunnable jobs.

Checkpointing chunk jobs
Only running chunk jobs can be checkpointed. If bchkpnt -k is used, the job
is also killed after the checkpoint file has been created. If chunk job in WAIT
state is checkpointed, mbatchd rejects the checkpoint request.

See Chapter 22, “Job Checkpoint, Restart, and Migration” for more information
about checkpointing jobs.

Action (Command) Job
State

Effect on Job (State)

Suspend (bstop) PEND Removed from chunk (PSUSP)

RUN All jobs in the chunk are suspended
(NRUN -1, NSUSP +1)

USUSP No change

WAIT Removed from chunk (PSUSP)

Kill (bkill) PEND Removed from chunk (NJOBS -1, PEND -1)

RUN Job finishes, next job in the chunk starts if one exists
(NJOBS -1, PEND -1)

USUSP Job finishes, next job in the chunk starts if one exists
(NJOBS -1, PEND -1, SUSP -1, RUN +1)

WAIT Job finishes (NJOBS-1, PEND -1)

Resume
(bresume)

USUSP Entire chunk is resumed (RUN +1, USUSP -1)

Migrate (bmig) WAIT Removed from chunk

Switch queue
(bswitch)

RUN Job is removed from the chunk and switched; all
other WAIT jobs are requeued to PEND

WAIT Only the WAIT job is removed from the chunk and
switched, and requeued to PEND

Checkpoint
(bchkpnt)

RUN Job is checkpointed normally

Modify (bmod) PEND Removed from the chunk to be scheduled later
Administering Platform LSF

Chapter 23
Chunk Job Dispatch
Fairshare policies and chunk jobs
Fairshare queues can use job chunking. Jobs are accumulated in the chunk job
so that priority is assigned to jobs correctly according to the fairshare policy
that applies to each user. Jobs belonging to other users are dispatched in other
chunks.

TERMINATE_WHEN job control action
If the TERMINATE_WHEN job control action is applied to a chunk job,
sbatchd kills the chunk job element that is running and puts the rest of the
waiting elements into pending state to be rescheduled later.
Administering Platform LSF 273

Submitting and Controlling Chunk Jobs

274
 Administering Platform LSF

C H A P T E R

24
Job Arrays

LSF provides a structure called a job array that allows a sequence of jobs that
share the same executable and resource requirements, but have different input
files, to be submitted, controlled, and monitored as a single unit. Using the
standard LSF commands, you can also control and monitor individual jobs and
groups of jobs submitted from a job array.

After the job array is submitted, LSF independently schedules and dispatches
the individual jobs. Each job submitted from a job array shares the same job
ID as the job array and are uniquely referenced using an array index. The
dimension and structure of a job array is defined when the job array is created.

Contents ◆ “Creating a Job Array” on page 276

◆ “Handling Input and Output Files” on page 278

◆ “Job Array Dependencies” on page 281

◆ “Monitoring Job Arrays” on page 282

◆ “Controlling Job Arrays” on page 284

◆ “Requeuing a Job Array” on page 285

◆ “Job Array Job Slot Limit” on page 286
Administering Platform LSF 275

Creating a Job Array

276
Creating a Job Array
A job array is created at job submission time using the -J option of bsub. For
example, the following command creates a job array named myArray made up
of 1000 jobs.

% bsub -J "myArray[1-1000]" myJob
Job <123> is submitted to default queue <normal>.

Syntax
The bsub syntax used to create a job array follows:

% bsub -J "arrayName[indexList, ...]" myJob

Where:

-J "arrayName[indexList, ...]"
Names and creates the job array. The square brackets, [], around indexList
must be entered exactly as shown and the job array name specification must
be enclosed in quotes. Commas (,) are used to separate multiple indexList
entries. The maximum length of this specification is 255 characters.

arrayName User specified string used to identify the job array. Valid values are any
combination of the following characters:

a-z | A-Z | 0-9 | . | - | _

indexList = start[-end[:step]]
Specifies the size and dimension of the job array, where:

◆ start

Used with end to specify the start of a range of indices. Can also be used
to specify an individual index. Valid values are unique positive integers.
For example, [1-5] and [1, 2, 3, 4, 5] specify 5 jobs with indices 1
through 5.

◆ end

Specifies the end of a range of indices. Valid values are unique positive
integers.

◆ step

Specifies the value to increment the indices in a range. Indices begin at
start, increment by the value of step, and do not increment past the
value of end. The default value is 1. Valid values are positive integers. For
example, [1-10:2] specifies a range of 1-10 with step value 2 creating
indices 1, 3, 5, 7, and 9.
Administering Platform LSF

Chapter 24
Job Arrays
After the job array is created (submitted), individual jobs are referenced using
the job array name or job ID and an index value. For example, both of the
following series of job array statements refer to jobs submitted from a job array
named myArray which is made up of 1000 jobs and has a job ID of 123:

myArray[1], myArray[2], myArray[3], ..., myArray[1000]
123[1], 123[2], 123[3], ..., 123[1000]

Maximum size of a job array
By default, the maximum index of a job array is 1000, which means the
maximum size of a job array can never exceed 1000 jobs. However, depending
on the ranges and step values you specify when you create the array, the
maximum size of a job array is usually much less than the maximum index
value. For example, even if your start and end values are 1 and 1000, a step
value of 2 creates jobs with indices 1, 3, 5, and so on. When you reach 999,
there are only 500 jobs in the array.

To make a change to the maximum index value, set MAX_JOB_ARRAY_SIZE
in lsb.params to any number up to 65534.
Administering Platform LSF 277

Handling Input and Output Files

278
Handling Input and Output Files
LSF provides methods for coordinating individual input and output files for the
multiple jobs created when submitting a job array. These methods require your
input files to be prepared uniformly. To accommodate an executable that uses
standard input and standard output, LSF provides runtime variables that are
expanded at runtime. To accommodate an executable that reads command line
arguments, LSF provides an environment variable that is set in the execution
environment.

Methods ◆ “Redirecting Standard Input and Output” on page 279

◆ “Passing Arguments on the Command Line” on page 280

Preparing input files
LSF needs all the input files for the jobs in your job array to be located in the
same directory. By default LSF assumes the current working directory (CWD);
the directory from where bsub was issued. To override CWD, specify an
absolute path when submitting the job array.

Each file name consists of two parts, a consistent name string and a variable
integer that corresponds directly to an array index. For example, the following
file names are valid input file names for a job array. They are made up of the
consistent name input and integers that correspond to job array indices from
1 to 1000:

input.1, input.2, input.3, ..., input.1000
Administering Platform LSF

Chapter 24
Job Arrays
Redirecting Standard Input and Output
The variables %I and %J are used as substitution strings to support file
redirection for jobs submitted from a job array. At execution time, %I is
expanded to provide the job array index value of the current job, and %J is
expanded at to provide the job ID of the job array.

Standard input
Use the -i option of bsub and the %I variable when your executable reads
from standard input. To use %I, all the input files must be named consistently
with a variable part that corresponds to the indices of the job array. For
example:

input.1, input.2, input.3, ..., input.N

For example, the following command submits a job array of 1000 jobs whose
input files are named input.1, input.2, input.3, ..., input.1000 and
located in the current working directory:

% bsub -J "myArray[1-1000]" -i "input.%I" myJob

Standard output and error
Use the -o option of bsub and the %I and %J variables when your executable
writes to standard output and error.

To create an output file that corresponds to each job submitted from a job
array, specify %I as part of the output file name. For example, the following
command submits a job array of 1000 jobs whose output files will be located
in CWD and named output.1, output.2, output.3, ..., output.1000:

% bsub -J "myArray[1-1000]" -o "output.%I" myJob

To create output files that include the job array job ID as part of the file name
specify %J. For example, the following command submits a job array of 1000
jobs whose output files will be located in CWD and named output.123.1,
output.123.2, output.123.3, ..., output.123.1000. The job ID of the job
array is 123.

% bsub -J "myArray[1-1000]" -o "output.%J.%I" myJob
Administering Platform LSF 279

Passing Arguments on the Command Line

280
Passing Arguments on the Command Line
The environment variable LSB_JOBINDEX is used as a substitution string to
support passing job array indices on the command line. When the job is
dispatched, LSF sets LSB_JOBINDEX in the execution environment to the job
array index of the current job. To use LSB_JOBINDEX, all the input files must
be named consistently and with a variable part that corresponds to the indices
of the job array. For example:

input.1, input.2, input.3, ..., input.N

You must escape LSB_JOBINDEX with a backslash, \, to prevent the shell
interpreting bsub from expanding the variable. For example, the following
command submits a job array of 1000 jobs whose input files are named
input.1, input.2, input.3, ..., input.1000 and located in the current
working directory. The executable is being passed an argument that specifies
the name of the input files:

% bsub -J "myArray[1-1000]" myJob -f input.\$LSB_JOBINDEX
Administering Platform LSF

Chapter 24
Job Arrays
Job Array Dependencies
Like all jobs in LSF, a job array can be dependent on the completion or partial
completion of a job or another job array. A number of job-array-specific
dependency conditions are provided by LSF.

Whole array dependency
To make a job array dependent on the completion of a job or another job array
use the -w "dependency_condition" option of bsub. For example, to have
an array dependent on the completion of a job or job array with job ID 123,
you would use the following command:

% bsub -w "done(123)" -J "myArray2[1-1000]" myJob

Partial array dependency
To make a job or job array dependent on an existing job array you would use
one of the following dependency conditions.

Use one the following operators (op) combined with a positive integer (num)
to build a condition:

== | > | < | >= |<= | !=

Optionally, an asterisk (*) can be used in place of num to mean all jobs
submitted from the job array.

For example, to start a job named myJob when 100 or more elements in a job
array with job ID 123 have completed successfully:

% bsub -w "numdone(123, >= 100)" myJob

Condition Description

numrun(jobArrayJobId, op num) Evaluate the number of jobs in RUN state

numpend(jobArrayJobId, op num) Evaluate the number of jobs in PEND state

numdone(jobArrayJobId, op num) Evaluate the number of jobs in DONE state

numexit(jobArrayJobId, op num) Evaluate the number of jobs in EXIT state

numended(jobArrayJobId, op num) Evaluate the number of jobs in DONE and
EXIT state

numhold(jobArrayJobId, op num) Evaluate the number of jobs in PSUSP state

numstart(jobArrayJobId, op num) Evaluate the number of jobs in RUN and SSUSP
and USUSP state
Administering Platform LSF 281

Monitoring Job Arrays

282
Monitoring Job Arrays
Use bjobs and bhist to monitor the current and past status of job arrays.

Job array status
To display summary information about the currently running jobs submitted
from a job array, use the -A option of bjobs. For example, a job array of 10
jobs with job ID 123:

% bjobs -A 123
JOBID ARRAY_SPEC OWNER NJOBS PEND DONE RUN EXIT SSUSP USUSP PSUSP
123 myArra[1-10] user1 10 3 3 4 0 0 0 0

Individual job status

Current To display the status of the individual jobs submitted from a job array, specify
the job array job ID with bjobs. For jobs submitted from a job array, JOBID
displays the job array job ID, and JOBNAME displays the job array name and
the index value of each job. For example, to view a job array with job ID 123:

% bjobs 123
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
123 user1 DONE default hostA hostC myArray[1] Feb 29 12:34
123 user1 DONE default hostA hostQ myArray[2] Feb 29 12:34
123 user1 DONE default hostA hostB myArray[3] Feb 29 12:34
123 user1 RUN default hostA hostC myArray[4] Feb 29 12:34
123 user1 RUN default hostA hostL myArray[5] Feb 29 12:34
123 user1 RUN default hostA hostB myArray[6] Feb 29 12:34
123 user1 RUN default hostA hostQ myArray[7] Feb 29 12:34
123 user1 PEND default hostA myArray[8] Feb 29 12:34
123 user1 PEND default hostA myArray[9] Feb 29 12:34
123 user1 PEND default hostA myArray[10] Feb 29 12:34

Past To display the past status of the individual jobs submitted from a job array,
specify the job array job ID with bhist. For example, to view the history of a
job array with job ID 456:

% bhist 456
Summary of time in seconds spent in various states:
JOBID USER JOB_NAME PEND PSUSP RUN USUSP SSUSP UNKWN TOTAL
456[1] user1 *rray[1] 14 0 65 0 0 0 79
456[2] user1 *rray[2] 74 0 25 0 0 0 99
456[3] user1 *rray[3] 121 0 26 0 0 0 147
456[4] user1 *rray[4] 167 0 30 0 0 0 197
456[5] user1 *rray[5] 214 0 29 0 0 0 243
456[6] user1 *rray[6] 250 0 35 0 0 0 285
456[7] user1 *rray[7] 295 0 33 0 0 0 328
456[8] user1 *rray[8] 339 0 29 0 0 0 368
456[9] user1 *rray[9] 356 0 26 0 0 0 382
456[10]user1 *ray[10] 375 0 24 0 0 0 399
Administering Platform LSF

Chapter 24
Job Arrays
Specific job status

Current To display the current status of a specific job submitted from a job array,
specify in quotes, the job array job ID and an index value with bjobs. For
example, the status of the 5th job in a job array with job ID 123:

% bjobs "123[5]"
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
123 user1 RUN default hostA hostL myArray[5] Feb 29 12:34

Past To display the past status of a specific job submitted from a job array, specify,
in quotes, the job array job ID and an index value with bhist. For example,
the status of the 5th job in a job array with job ID 456:

% bhist "456[5]"
Summary of time in seconds spent in various states:
JOBID USER JOB_NAME PEND PSUSP RUN USUSP SSUSP UNKWN TOTAL
456[5] user1 *rray[5] 214 0 29 0 0 0 243
Administering Platform LSF 283

Controlling Job Arrays

284
Controlling Job Arrays
You can control the whole array, all the jobs submitted from the job array, with
a single command. LSF also provides the ability to control individual jobs and
groups of jobs submitted from a job array. When issuing commands against a
job array, use the job array job ID instead of the job array name. Job names are
not unique in LSF, and issuing a command using a job array name may result
in unpredictable behavior.

Most LSF commands allow operation on both the whole job array, individual
jobs, and groups of jobs. These commands include bkill, bstop, bresume,
and bmod.

Some commands only allow operation on individual jobs submitted from a job
array. These commands include btop, bbot, and bswitch.

Whole array
To control the whole job array, specify the command as you would for a single
job using only the job ID. For example, to kill a job array with job ID 123:

% bkill 123

Individual jobs
To control an individual job submitted from a job array, specify the command
using the job ID of the job array and the index value of the corresponding job.
The job ID and index value must be enclosed in quotes. For example, to kill
the 5th job in a job array with job ID 123:

% bkill "123[5]"

Groups of jobs
To control a group of jobs submitted from a job array, specify the command as
you would for an individual job and use indexList syntax to indicate the jobs.
For example, to kill jobs 1-5, 239, and 487 in a job array with job ID 123:

% bkill "123[1-5, 239, 487]"
Administering Platform LSF

Chapter 24
Job Arrays
Requeuing a Job Array
Use brequeue to requeue a job array. When the job is requeued, it is assigned
the PEND status and the job’s new position in the queue is after other jobs of
the same priority. You can requeue:

◆ Jobs in DONE job state

◆ Jobs EXIT job state

◆ All jobs regardless of job state in a job array.

◆ EXIT, RUN, DONE jobs to PSUSP state

◆ Jobs in RUN job state

brequeue is not supported across clusters.

Requeuing jobs in DONE state
To requeue DONE jobs use the -d option of brequeue. For example, the
command brequeue -J "myarray[1-10]" -d 123 requeues jobs with job
ID 123 and DONE status.

Requeuing Jobs in EXIT state
To requeue EXIT jobs use the -e option of brequeue. For example, the
command brequeue -J "myarray[1-10]" -e 123 requeues jobs with job
ID 123 and EXIT status.

Requeuing all jobs in an array regardless of job state
A submitted job array can have jobs that have different job states. To requeue
all the jobs in an array regardless of any job’s state, use the -a option of
brequeue. For example, the command brequeue -J "myarray[1-10]" -a
123 requeues all jobs in a job array with job ID 123 regardless of their job state.

Requeuing RUN jobs to PSUSP state
To requeue RUN jobs to PSUSP state, use the -H option of brequeue. For
example, the command brequeue -J "myarray[1-10]" -H 123 requeues
to PSUSP RUN status jobs with job ID 123.

Requeuing jobs in RUN state
To requeue RUN jobs use the -r option of brequeue. For example, the
command brequeue -J "myarray[1-10]" -r 123 requeues jobs with job
ID 123 and RUN status.
Administering Platform LSF 285

Job Array Job Slot Limit

286
Job Array Job Slot Limit
The job array job slot limit is used to specify the maximum number of jobs
submitted from a job array that are allowed to run at any one time. A job array
allows a large number of jobs to be submitted with one command, potentially
flooding a system, and job slot limits provide a way to limit the impact a job
array may have on a system. Job array job slot limits are specified using the
following syntax:

% bsub -J "arrayName[indexList]%jobLimit" myJob

where:

%jobLimit Specifies the maximum number of jobs allowed to run at any one time. The
percent sign, %, must be entered exactly as shown. Valid values are positive
integers less than the maximum index value of the job array.

Setting a job array job slot limit
A job array job slot limit can be set at the time of submission using bsub, or
after submission using bmod.

At Submission For example, to set a job array job slot limit of 100 jobs for a job array of 1000
jobs:

% bsub -J "jobArrayName[1000]%100" myJob

After submission For example, to set a job array job slot limit of 100 jobs for an
array with job ID 123:

% bmod -J "%100" 123

Changing a job array job slot limit
Changing a job array job slot limit is the same as setting it after submission. For
example, to change a job array job slot limit to 250 for a job array with job ID
123:

% bmod -J "%250" 123
Administering Platform LSF

Chapter 24
Job Arrays
Viewing a job array job slot limit
To view job array job slot limits use the -A and -l options of bjobs. The job
array job slot limit is displayed in the Job Name field in the same format in
which it was set. For example, the following output displays the job array job
slot limit of 100 for a job array with job ID 123:

% bjobs -A -l 123
Job <123>, Job Name <myArray[1-1000]%100>, User <user1>, Project <default>, Sta
 tus <PEND>, Queue <normal>, Job Priority <20>, Command <my
 Job>
Wed Feb 29 12:34:56: Submitted from host <hostA>, CWD <$HOME>;

 COUNTERS:
 NJOBS PEND DONE RUN EXIT SSUSP USUSP PSUSP
 10 9 0 1 0 0 0 0
Administering Platform LSF 287

Job Array Job Slot Limit

288
 Administering Platform LSF

P A R T

V
Controlling Job Execution

Contents ◆ Chapter 25, “Runtime Resource Usage Limits”

◆ Chapter 26, “Load Thresholds”

◆ Chapter 27, “Pre-Execution and Post-Execution Commands”

◆ Chapter 28, “Job Starters”

◆ Chapter 29, “External Job Submission and Execution Controls”

◆ Chapter 30, “Configuring Job Controls”

C H A P T E R

25
Runtime Resource Usage Limits

Contents ◆ “About Resource Usage Limits” on page 292

◆ “Specifying Resource Usage Limits” on page 294

◆ “Supported Resource Usage Limits and Syntax” on page 297

◆ “CPU Time and Run Time Normalization” on page 302
Administering Platform LSF 291

About Resource Usage Limits

292
About Resource Usage Limits
Resource usage limits control how much resource can be consumed by
running jobs. Jobs that use more than the specified amount of a resource are
signalled or have their priority lowered.

Limits can be specified either at the queue level by your LSF administrator
(lsb.queues) or at the job level when you submit a job.

For example, by defining a high-priority short queue, you can allow short jobs
to be scheduled earlier than long jobs. To prevent some users from submitting
long jobs to this short queue, you can set CPU limit for the queue so that no
jobs submitted from the queue can run for longer than that limit.

Limits specified at the queue level are hard limits, while those specified with
job submission are soft limits. See setrlimit(2) man page for concepts of
hard and soft limits.

Resource usage limits and resource allocation limits
Resource usage limits are not the same as resource allocation limits, which are
enforced during job scheduling and before jobs are dispatched. You set
resouce allocation limits to restrict the amount of a given resource that must
be available during job scheduling for different classes of jobs to start, and
which resource consumers the limits apply to.

See Chapter 15, “Resource Allocation Limits” for more information.

Summary of resource usage limits
Limit Job syntax (bsub) Queue syntax (lsb.queues) Fomat/Units

Core file size limit -C core_limit CORELIMIT=limit integer KB

CPU time limit -c cpu_limit CPULIMIT=[default]
maximum

[hours:]minutes[/host_name |
/host_model]

Data segment size
limit

-D data_limit DATALIMIT=[default]
maximum

integer KB

File size limit -F file_limit FILELIMIT=limit integer KB

Memory limit -M mem_limit MEMLIMIT=[default]
maximum

integer KB

Process limit -p process_limit PROCESSLIMIT=[default]
maximum

integer KB

Run time limit -W run_limit RUNLIMIT=[default]
maximum

[hours:]minutes[/host_name |
/host_model]

Stack segment size
limit

-S stack_limit STACKLIMIT=limit integer KB

Virtual memory limit -v swap_limit SWAPLIMIT=limit integer KB
Administering Platform LSF

Chapter 25
Runtime Resource Usage Limits
Priority of resource usage limits
If no limit is specified at job submission, then the following apply to all jobs
submitted to the queue:

Incorrect resource usage limits
Incorrect limits are ignored, and a warning message is displayed when the
cluster is reconfigured or restarted. A warning message is also logged to the
mbatchd log file when LSF is started.

If no limit is specified at job submission, then the following apply to all jobs
submitted to the queue:

Resource usage limits specified at job submission must be less than the
maximum specified in lsb.queues. The job submission is rejected if the user-
specified limit is greater than the queue-level maximum, and the following
message is issued:

Cannot exceed queue’s hard limit(s). Job not submitted.

If ... Then ...

Both default and maximum limits are defined The default is enforced

Only a maximum is defined The maximum is enforced

No limit is specified in the queue or at job submission No limits are enforced

If ... Then ...

The default limit is incorrect The default is ignored and the maximum limit is
enforced

Both default and maximum
limits are specified, and the
maximum is incorrect

The maximum is ignored and the resource has no
maximum limit, only a default limit

Both default and maximum
limits are incorrect

The default and maximum are ignored and no limit
is enforced
Administering Platform LSF 293

Specifying Resource Usage Limits

294
Specifying Resource Usage Limits
Queues can enforce resource usage limits on running jobs. LSF supports most
of the limits that the underlying operating system supports. In addition, LSF
also supports a few limits that the underlying operating system does not
support.

Specify queue-level resource usage limits using parameters in lsb.queues.

Specifying queue-level resource usage limits
Limits configured in lsb.queues apply to all jobs submitted to the queue. Job-
level resource usage limits specified at job submission override the queue
definitions.

Maximum value
only

Specify only a maximum value for the resource.

For example, to specify a maximum run limit, use one value for the RUNLIMIT
parameter in lsb.queues:

RUNLIMIT = 10

The maximum run limit for the queue is 10 minutes. Jobs cannot run for more
than 10 minutes. Jobs in the RUN state for longer than 10 minutes are killed by
LSF.

If only one run limit is specified, jobs that are submitted with bsub -W with a
run limit that exceeds the maximum run limit will not be allowed to run. Jobs
submitted without bsub 1-W will be allowed to run but will be killed when
they are in the RUN state for longer than the specified maximum run limit.

For example, in lsb.queues:

RUNLIMIT = 10

The maximum run limit for the queue is 10 minutes. Jobs cannot run for more
than 10 minutes.

Default and
maximum values

If you specify two limits, the first one is the default (soft) limit for jobs in the
queue and the second one is the maximum (hard) limit. Both the default and
the maximum limits must be positive integers. The default limit must be less
than the maximum limit. The default limit is ignored if it is greater than the
maximum limit.

Use the default limit to avoid having to specify resource usage limits in the
bsub command.

For example, to specify a default and a maximum run limit, use two values for
the RUNLIMIT parameter in lsb.queues:

RUNLIMIT = 10 15
Administering Platform LSF

Chapter 25
Runtime Resource Usage Limits
◆ The first number is the default run limit applied to all jobs in the queue that
are submitted without a job-specific run limit (without bsub -W).

◆ The second number is the maximum run limit applied to all jobs in the
queue that are submitted with a job-specific run limit (with bsub -W). The
default run limit must be less than the maximum run limit.

You can specify both default and maximum values for the following resource
usage limits in lsb.queues:

◆ CPULIMIT

◆ DATALIMIT

◆ MEMLIMIT

◆ PROCESSLIMIT

◆ RUNLIMIT

Host specification
with two limits

If default and maximum limits are specified for CPU time limits or run time
limits, only one host specification is permitted. For example, the following CPU
limits are correct (and have an identical effect):

◆ CPULIMIT = 400/hostA 600
◆ CPULIMIT = 400 600/hostA

The following CPU limit is incorrect:

CPULIMIT = 400/hostA 600/hostB

The following run limits are correct (and have an identical effect):

◆ RUNLIMIT = 10/hostA 15
◆ RUNLIMIT = 10 15/hostA

The following run limit is incorrect:

RUNLIMIT = 10/hostA 15/hostB

Default run limits for backfill scheduling
Default run limits are used for backfill scheduling of parallel jobs.

For example, in lsb.queues, you enter: RUNLIMIT = 10 15

◆ The first number is the default run limit applied to all jobs in the queue that
are submitted without a job-specific run limit (without bsub -W).

◆ The second number is the maximum run limit applied to all jobs in the
queue that are submitted with a job-specific run limit (with
bsub -W). The default run limit cannot exceed the maximum run limit.

Automatically assigning a default run limit to all jobs in the queue means that
backfill scheduling works efficiently.

For example, in lsb.queues, you enter:

RUNLIMIT = 10 15

The first number is the default run limit applied to all jobs in the queue that
are submitted without a job-specific run limit. The second number is the
maximum run limit.
Administering Platform LSF 295

Specifying Resource Usage Limits

296
If you submit a job to the queue without the -W option, the default run limit is
used:

% bsub myjob

The job myjob cannot run for more than 10 minutes as specified with the
default run limit.

If you submit a job to the queue with the -W option, the maximum run limit is
used:

% bsub -W 12 myjob

The job myjob is allowed to run on the queue because the specified run limit
(12) is less than the maximum run limit for the queue (15).

% bsub -W 20 myjob

The job myjob is rejected from the queue because the specified run limit (20)
is more than the maximum run limit for the queue (15).

Specifying job-level resource usage limits
Job-level resource usage limits specified at job submission override the queue
definitions.
Administering Platform LSF

Chapter 25
Runtime Resource Usage Limits
Supported Resource Usage Limits and Syntax

Core file size limit

Sets a per-process (soft) core file size limit in KB for each process that belongs
to this batch job. On some systems, no core file is produced if the image for
the process is larger than the core limit. On other systems only the first
core_limit KB of the image are dumped. The default is no soft limit.

CPU time limit

Sets the soft CPU time limit to cpu_limit for this batch job. The default is no
limit. This option is useful for avoiding runaway jobs that use up too many
resources. LSF keeps track of the CPU time used by all processes of the job.

When the job accumulates the specified amount of CPU time, a SIGXCPU
signal is sent to all processes belonging to the job. If the job has no signal
handler for SIGXCPU, the job is killed immediately. If the SIGXCPU signal is
handled, blocked, or ignored by the application, then after the grace period
expires, LSF sends SIGINT, SIGTERM, and SIGKILL to the job to kill it.

You can define whether the CPU limit is a per-process limit enforced by the
OS or a per-job limit enforced by LSF with LSB_JOB_CPULIMIT in lsf.conf.

The CPU time limit is normalized according to the CPU factor of the execution
host. See “CPU Time and Run Time Normalization” on page 302 for more
information.

Format cpu_limit is in the form [hour:]minute, where minute can be greater than 59.
So, 3.5 hours can either be specified as 3:30 or 210. The CPU limit is scaled by
the host CPU factors of the submitting and execution hosts. This is done so that
the job does approximately the same amount of processing for a given CPU
limit, even if it is sent to a host with a faster or slower CPU.

For example, if a job is submitted from a host with a CPU factor of 2 and
executed on a host with a CPU factor of 3, the CPU time limit is multiplied by
2/3 because the execution host can do the same amount of work as the
submission host in 2/3 of the time.

If the optional host name or host model is not given, the CPU limit is scaled
based on the DEFAULT_HOST_SPEC specified in the lsb.params file. (If
DEFAULT_HOST_SPEC is not defined, the fastest batch host in the cluster is
used as the default.) If host or host model is given, its CPU scaling factor is
used to adjust the actual CPU time limit at the execution host.

Job syntax (bsub) Queue syntax (lsb.queues) Fomat/Units

-C core_limit CORELIMIT=limit integer KB

Job syntax (bsub) Queue syntax (lsb.queues) Fomat/Units

-c cpu_limit CPULIMIT=[default]
maximum

[hours:]minutes[/host_name |
/host_model]
Administering Platform LSF 297

Supported Resource Usage Limits and Syntax

298
The following example specifies that myjob can run for 10 minutes on a
DEC3000 host, or the corresponding time on any other host:

% bsub -c 10/DEC3000 myjob

Data segment size limit

Sets a per-process (soft) data segment size limit in KB for each process that
belongs to this batch job. An sbrk() or malloc() call to extend the data
segment beyond the data limit returns an error. The default is no soft limit.

File size limit

Sets a per-process (soft) file size limit in KB for each process that belongs to
this batch job. If a process of this job attempts to write to a file such that the
file size would increase beyond the file limit, the kernel sends that process a
SIGXFSZ signal. This condition normally terminates the process, but may be
caught. The default is no soft limit.

Memory limit

Sets the memory limit, in KB.

If LSB_MEMLIMIT_ENFORCE or LSB_JOB_MEMLIMIT in lsf.conf are set to
y, LSF kills the job when it exceeds the memory limit. Otherwise, LSF passes
the memory limit to the operating system. Some operating systems apply the
memory limit to each process, and some do not enforce the memory limit at all.

LSF memory limit
enforcement

To enable LSF memory limit enforcement, set LSB_MEMLIMIT_ENFORCE in
lsf.conf to y. LSF memory limit enforcement explicitly sends a signal to kill
a running process once it has allocated memory past mem_limit.

You can also enable LSF memory limit enforcement by setting
LSB_JOB_MEMLIMIT in lsf.conf to y. The difference between
LSB_JOB_MEMLIMIT set to y and LSB_MEMLIMIT_ENFORCE set to y is that
with LSB_JOB_MEMLIMIT, only the per-job memory limit enforced by LSF is
enabled. The per-process memory limit enforced by the OS is disabled. With
LSB_MEMLIMIT_ENFORCE set to y, both the per-job memory limit enforced by
LSF and the per-process memory limit enforced by the OS are enabled.

Job syntax (bsub) Queue syntax (lsb.queues) Fomat/Units

-D data_limit DATALIMIT=[default]
maximum

integer KB

Job syntax (bsub) Queue syntax (lsb.queues) Fomat/Units

-F file_limit FILELIMIT=limit integer KB

Job syntax (bsub) Queue syntax (lsb.queues) Fomat/Units

-M mem_limit MEMLIMIT=[default]
maximum

integer KB
Administering Platform LSF

Chapter 25
Runtime Resource Usage Limits
LSB_JOB_MEMLIMIT disables per-process memory limit enforced by the OS
and enables per-job memory limit enforced by LSF. When the total memory
allocated to all processes in the job exceeds the memory limit, LSF sends the
following signals to kill the job: SIGINT first, then SIGTERM, then SIGKILL.

On UNIX, the time interval between SIGINT, SIGKILL, SIGTERM can be
configured with the parameter JOB_TERMINATE_INTERVAL in lsb.params.

OS memory limit
enforcement

OS enforcement usually allows the process to eventually run to completion.
LSF passes mem_limit to the OS which uses it as a guide for the system
scheduler and memory allocator. The system may allocate more memory to a
process if there is a surplus. When memory is low, the system takes memory
from and lowers the scheduling priority (re-nice) of a process that has
exceeded its declared mem_limit.

OS memory limit enforcement is only available on systems that support
RLIMIT_RSS for setrlimit().

The following operating systems do not support the memory limit at the OS
level:

◆ Windows NT

◆ Sun Solaris 2.x

Process limit

Sets the limit of the number of processes to process_limit for the whole job.
The default is no limit. Exceeding the limit causes the job to terminate.

Limits the number of concurrent processes that can be part of a job.

If a default process limit is specified, jobs submitted to the queue without a
job-level process limit are killed when the default process limit is reached.

If you specify only one limit, it is the maximum, or hard, process limit. If you
specify two limits, the first one is the default, or soft, process limit, and the
second one is the maximum process limit.

Run time limit

A run time limit is the maximum amount of time a job can run before it is
terminated. It sets the wall-clock run time limit of a job. The default is no limit.
If the accumulated time the job has spent in the RUN state exceeds this limit,
the job is sent a USR2 signal. If the job does not terminate within 10 minutes
after being sent this signal, it is killed.

Job syntax (bsub) Queue syntax (lsb.queues) Fomat/Units

-p process_limit PROCESSLIMIT=[default]
maximum

integer KB

Job syntax (bsub) Queue syntax (lsb.queues) Fomat/Units

-W run_limit RUNLIMIT=[default]
maximum

[hours:]minutes[/host_name |
/host_model]
Administering Platform LSF 299

Supported Resource Usage Limits and Syntax

300
With deadline constraint scheduling configured, a run limit also specifies the
amount of time a job is expected to take, and the minimum amount of time
that must be available before a job can be started.

Stack segment size limit

Sets a per-process (soft) stack segment size limit in KB for each process that
belongs to this batch job. An sbrk() call to extend the stack segment beyond
the stack limit causes the process to be terminated. The default is no soft limit.

Virtual memory (swap) limit

Sets the total process virtual memory limit to swap_limit in KB for the whole
job. The default is no limit. Exceeding the limit causes the job to terminate.

This limit applies to the whole job, no matter how many processes the job may
contain.

Examples

Queue-level limits ◆ CPULIMIT = 20/hostA 15

The first number is the default CPU limit. The second number is the
maximum CPU limit.

However, the default CPU limit is ignored because it is a higher value than
the maximum CPU limit.

◆ CPULIMIT = 10/hostA

In this example, the lack of a second number specifies that there is no
default CPU limit. The specified number is considered as the default and
maximum CPU limit.

◆ RUNLIMIT = 10/hostA 15

The first number is the default run limit. The second number is the
maximum run limit.

The first number specifies that the default run limit is to be used for jobs
that are submitted without a specified run limit (without the -W option of
bsub).

◆ RUNLIMIT = 10/hostA

No default run limit is specified. The specified number is considered as the
default and maximum run limit.

Job syntax (bsub) Queue syntax (lsb.queues) Fomat/Units

-S stack_limit STACKLIMIT=limit integer KB

Job syntax (bsub) Queue syntax (lsb.queues) Fomat/Units

-v swap_limit SWAPLIMIT=limit integer KB
Administering Platform LSF

Chapter 25
Runtime Resource Usage Limits
Job-level limits ◆ % bsub -M 5000 myjob

Submits myjob with a memory limit of 5000 KB

◆ % bsub -W 14 myjob

myjob is expected to run for 14 minutes. If the run limit specified with
bsub -W does not exceed the value for the queue, the job will be allowed
to run. Otherwise, it will be rejected.
Administering Platform LSF 301

CPU Time and Run Time Normalization

302
CPU Time and Run Time Normalization
To set the CPU time limit and run time limit for jobs in a platform-independent
way, LSF scales the limits by the CPU factor of the hosts involved. When a job
is dispatched to a host for execution, the limits are then normalized according
to the CPU factor of the execution host.

Whenever a normalized CPU time or run time is given, the actual time on the
execution host is the specified time multiplied by the CPU factor of the
normalization host then divided by the CPU factor of the execution host.

Normalization host
If no host or host model is given with the CPU time or run time, LSF uses the
default CPU time normalization host defined at the queue level
(DEFAULT_HOST_SPEC in lsb.queues) if it has been configured, otherwise
uses the default CPU time normalization host defined at the cluster level
(DEFAULT_HOST_SPEC in lsb.params) if it has been configured, otherwise
uses the submission host.

Example CPULIMIT=10/hostA

If hostA has a CPU factor of 2, and hostB has a CPU factor of 1 (hostB is
slower than hostA), this specifies an actual time limit of 10 minutes on hostA,
or on any other host that has a CPU factor of 2. However, if hostB is the
execution host, the actual time limit on hostB is 20 minutes (10 * 2 / 1).

Normalization hosts for default CPU and run time limits
The first valid host factor encountered is used for both CPU limit and run time
limit. To be valid, a host specification must be a valid host name that is a
member of the LSF cluster. The host factor is used even if the specified limit is
not valid.

If the CPU and run limit have different host specifications, the CPU limit host
specification is enforced.

If no host or host model is given with the CPU or run time limits, LSF
determines the default normalization host according to the following priority:

1 DEFAULT_HOST_SPEC is configured in lsb.queues

2 DEFAULT_HOST_SPEC is configured in lsb.params

3 If DEFAULT_HOST_SPEC is not configured in lsb.queues or
lsb.params, host with the largest CPU factor is used.
Administering Platform LSF

C H A P T E R

26
Load Thresholds

Contents ◆ “Automatic Job Suspension” on page 304

◆ “Suspending Conditions” on page 306
Administering Platform LSF 303

Automatic Job Suspension

304
Automatic Job Suspension
Jobs running under LSF can be suspended based on the load conditions on the
execution hosts. Each host and each queue can be configured with a set of
suspending conditions. If the load conditions on an execution host exceed
either the corresponding host or queue suspending conditions, one or more
jobs running on that host will be suspended to reduce the load.

When LSF suspends a job, it invokes the SUSPEND action. The default
SUSPEND action is to send the signal SIGSTOP.

By default, jobs are resumed when load levels fall below the suspending
conditions. Each host and queue can be configured so that suspended
checkpointable or rerunable jobs are automatically migrated to another host
instead.

If no suspending threshold is configured for a load index, LSF does not check
the value of that load index when deciding whether to suspend jobs.

Suspending thresholds can also be used to enforce inter-queue priorities. For
example, if you configure a low-priority queue with an r1m (1 minute CPU run
queue length) scheduling threshold of 0.25 and an r1m suspending threshold
of 1.75, this queue starts one job when the machine is idle. If the job is CPU
intensive, it increases the run queue length from 0.25 to roughly 1.25. A high-
priority queue configured with a scheduling threshold of 1.5 and an unlimited
suspending threshold will send a second job to the same host, increasing the
run queue to 2.25. This exceeds the suspending threshold for the low priority
job, so it is stopped. The run queue length stays above 0.25 until the high
priority job exits. After the high priority job exits the run queue index drops
back to the idle level, so the low priority job is resumed.

When jobs are running on a host, LSF periodically checks the load levels on
that host. If any load index exceeds the corresponding per-host or per-queue
suspending threshold for a job, LSF suspends the job. The job remains
suspended until the load levels satisfy the scheduling thresholds.

At regular intervals, LSF gets the load levels for that host. The period is defined
by the SBD_SLEEP_TIME parameter in the lsb.params file. Then, for each job
running on the host, LSF compares the load levels against the host suspending
conditions and the queue suspending conditions. If any suspending condition
at either the corresponding host or queue level is satisfied as a result of
increased load, the job is suspended. A job is only suspended if the load levels
are too high for that particular job’s suspending thresholds.

There is a time delay between when LSF suspends a job and when the changes
to host load are seen by the LIM. To allow time for load changes to take effect,
LSF suspends no more than one job at a time on each host.

Jobs from the lowest priority queue are checked first. If two jobs are running
on a host and the host is too busy, the lower priority job is suspended and the
higher priority job is allowed to continue. If the load levels are still too high
on the next turn, the higher priority job is also suspended.
Administering Platform LSF

Chapter 26
Load Thresholds
If a job is suspended because of its own load, the load drops as soon as the
job is suspended. When the load goes back within the thresholds, the job is
resumed until it causes itself to be suspended again.

Exceptions In some special cases, LSF does not automatically suspend jobs because of load
levels.

◆ LSF does not suspend a job forced to run with brun -f.

◆ LSF does not suspend the only job running on a host, unless the host is
being used interactively.

When only one job is running on a host, it is not suspended for any reason
except that the host is not interactively idle (the it interactive idle time
load index is less than one minute). This means that once a job is started
on a host, at least one job continues to run unless there is an interactive
user on the host. Once the job is suspended, it is not resumed until all the
scheduling conditions are met, so it should not interfere with the
interactive user.

◆ LSF does not suspend a job because of the paging rate, unless the host is
being used interactively.

When a host has interactive users, LSF suspends jobs with high paging
rates, to improve the response time on the host for interactive users. When
a host is idle, the pg (paging rate) load index is ignored. The PG_SUSP_IT
parameter in lsb.params controls this behaviour. If the host has been idle
for more than PG_SUSP_IT minutes, the pg load index is not checked
against the suspending threshold.
Administering Platform LSF 305

Suspending Conditions

306
Suspending Conditions
LSF provides different alternatives for configuring suspending conditions.
Suspending conditions are configured at the host level as load thresholds,
whereas suspending conditions are configured at the queue level as either load
thresholds, or by using the STOP_COND parameter in the lsb.queues file, or
both.

The load indices most commonly used for suspending conditions are the CPU
run queue lengths (r15s, r1m, and r15m), paging rate (pg), and idle time (it).
The (swp) and (tmp) indices are also considered for suspending jobs.

To give priority to interactive users, set the suspending threshold on the it
(idle time) load index to a non-zero value. Jobs are stopped (within about 1.5
minutes) when any user is active, and resumed when the host has been idle
for the time given in the it scheduling condition.

To tune the suspending threshold for paging rate, it is desirable to know the
behaviour of your application. On an otherwise idle machine, check the
paging rate using lsload, and then start your application. Watch the paging
rate as the application runs. By subtracting the active paging rate from the idle
paging rate, you get a number for the paging rate of your application. The
suspending threshold should allow at least 1.5 times that amount. A job can be
scheduled at any paging rate up to the scheduling threshold, so the suspending
threshold should be at least the scheduling threshold plus 1.5 times the
application paging rate. This prevents the system from scheduling a job and
then immediately suspending it because of its own paging.

The effective CPU run queue length condition should be configured like the
paging rate. For CPU-intensive sequential jobs, the effective run queue length
indices increase by approximately one for each job. For jobs that use more than
one process, you should make some test runs to determine your job’s effect on
the run queue length indices. Again, the suspending threshold should be equal
to at least the scheduling threshold plus 1.5 times the load for one job.

Configuring load thresholds at queue level
The queue definition (lsb.queues) can contain thresholds for 0 or more of
the load indices. Any load index that does not have a configured threshold has
no effect on job scheduling.

Syntax Each load index is configured on a separate line with the format:

load_index = loadSched/loadStop

Specify the name of the load index, for example r1m for the 1-minute CPU run
queue length or pg for the paging rate. loadSched is the scheduling threshold
for this load index. loadStop is the suspending threshold. The loadSched
condition must be satisfied by a host before a job is dispatched to it and also
before a job suspended on a host can be resumed. If the loadStop condition
is satisfied, a job is suspended.
Administering Platform LSF

Chapter 26
Load Thresholds
The loadSched and loadStop thresholds permit the specification of
conditions using simple AND/OR logic. For example, the specification:

MEM=100/10
SWAP=200/30

translates into a loadSched condition of mem>=100 && swap>=200 and a
loadStop condition of mem < 10 || swap < 30.

Theory ◆ The r15s, r1m, and r15m CPU run queue length conditions are compared
to the effective queue length as reported by lsload -E, which is
normalised for multiprocessor hosts. Thresholds for these parameters
should be set at appropriate levels for single processor hosts.

◆ Configure load thresholds consistently across queues. If a low priority
queue has higher suspension thresholds than a high priority queue, then
jobs in the higher priority queue will be suspended before jobs in the low
priority queue.

Configuring load thresholds at host level
A shared resource cannot be used as a load threshold in the Hosts section of
the lsf.cluster.cluster_name file.

Configuring suspending conditions at queue level
The condition for suspending a job can be specified using the queue-level
STOP_COND parameter. It is defined by a resource requirement string. Only
the select section of the resource requirement string is considered when
stopping a job. All other sections are ignored.

This parameter provides similar but more flexible functionality for loadStop.

If loadStop thresholds have been specified, then a job will be suspended if
either the STOP_COND is TRUE or the loadStop thresholds are exceeded.

Example This queue will suspend a job based on the idle time for desktop machines
and based on availability of swap and memory on compute servers. Assume
cs is a Boolean resource defined in the lsf.shared file and configured in the
lsf.cluster.cluster_name file to indicate that a host is a compute server:

Begin Queue
.
STOP_COND= select[((!cs && it < 5) || (cs && mem < 15 && swap < 50))]
.
End Queue

Viewing host-level and queue-level suspending conditions
The suspending conditions are displayed by the bhosts -l and bqueues -l
commands.
Administering Platform LSF 307

Suspending Conditions

308
Viewing job-level suspending conditions
The thresholds that apply to a particular job are the more restrictive of the host
and queue thresholds, and are displayed by the bjobs -l command.

Viewing suspend reason
The bjobs -lp command shows the load threshold that caused LSF to
suspend a job, together with the scheduling parameters.

The use of STOP_COND affects the suspending reasons as displayed by the
bjobs command. If STOP_COND is specified in the queue and the loadStop
thresholds are not specified, the suspending reasons for each individual load
index will not be displayed.

Resuming suspended jobs
Jobs are suspended to prevent overloading hosts, to prevent batch jobs from
interfering with interactive use, or to allow a more urgent job to run. When the
host is no longer overloaded, suspended jobs should continue running.

When LSF automatically resumes a job, it invokes the RESUME action. The
default action for RESUME is to send the signal SIGCONT.

If there are any suspended jobs on a host, LSF checks the load levels in each
dispatch turn.

If the load levels are within the scheduling thresholds for the queue and the
host, and all the resume conditions for the queue (RESUME_COND in
lsb.queues) are satisfied, the job is resumed.

If RESUME_COND is not defined, then the loadSched thresholds are used to
control resuming of jobs: all the loadSched thresholds must be satisfied for
the job to be resumed. The loadSched thresholds are ignored if
RESUME_COND is defined.

Jobs from higher priority queues are checked first. To prevent overloading the
host again, only one job is resumed in each dispatch turn.

Specifying resume condition
Use RESUME_COND in lsb.queues to specify the condition that must be
satisfied on a host if a suspended job is to be resumed.

Only the select section of the resource requirement string is considered when
resuming a job. All other sections are ignored.

Viewing resume thresholds
The bjobs -l command displays the scheduling thresholds that control when
a job is resumed.
Administering Platform LSF

C H A P T E R

27
Pre-Execution and Post-Execution

Commands

Jobs can be submitted with optional pre- and post-execution commands. A
pre- or post-execution command is an arbitrary command to run before the job
starts or after the job finishes.

Contents ◆ “About Pre-Execution and Post-Execution Commands” on page 310

◆ “Configuring Pre- and Post-Execution Commands” on page 312
Administering Platform LSF 309

About Pre-Execution and Post-Execution Commands

310
About Pre-Execution and Post-Execution Commands
Each batch job can be submitted with optional pre- and post-execution
commands. Pre- and post-execution commands can be any arbitrary command
lines to be run before a job is started or after a job finishes.

Some batch jobs require resources that LSF does not directly support. For
example, appropriate pre- and/or post-execution commands can be used to
handle various situations:

◆ Reserving devices like tape drives

◆ Creating and deleting scratch directories for a job

◆ Customized scheduling

◆ Checking availability of software licenses

◆ Assigning jobs to run on specific processors on SMP machines

By default, the pre- and post-execution commands are run under the same user
ID, environment, and home and working directories as the batch job. If the
command is not in your normal execution path, the full path name of the
command must be specified.

For parallel jobs, the command is run on the first selected host.

Pre-execution commands
Pre-execution commands support job starting decisions which cannot be
configured directly in LSF. LSF supports both job-level and queue-level pre-
execution.

The pre-execution command returns information to LSF using its exit status.
When a pre-execution command is specified, the job is held in the queue until
the specified pre-execution command returns exit status zero (0).

If the pre-execution command exits with non-zero status, the batch job is not
dispatched. The job goes back to the PEND state, and LSF tries to dispatch
another job to that host. While the job is pending, other jobs can proceed
ahead of the waiting job. The next time LSF tries to dispatch jobs this process
is repeated.

If the pre-execution command exits with a value of 99, the job will not go back
to the PEND state, it will exit. This gives you flexibility to abort the job if the
pre-execution command fails.

LSF assumes that the pre-execution command runs without side effects. For
example, if the pre-execution command reserves a software license or other
resource, you must not reserve the same resource more than once for the same
batch job.
Administering Platform LSF

Chapter 27
Pre-Execution and Post-Execution Commands
Post-execution commands
If a post-execution command is specified, then the command is run after the
job is finished.

Post-execution commands are typically used to clean up some state left by the
pre-execution and the job execution. Post-execution is only supported at the
queue level.

Job-level commands
The bsub -E option specifies an arbitrary command to run before starting the
batch job. When LSF finds a suitable host on which to run a job, the pre-
execution command is executed on that host. If the pre-execution command
runs successfully, the batch job is started.

Job-level post-execution commands are not supported.

Queue-level commands
In some situations (for example, license checking), it is better to specify a
queue-level pre-execution command instead of requiring every job be
submitted with the -E option of bsub.

Queue-level commands run on the execution host before or after a job from
the queue is run.

The LSF administrator uses the PRE_EXEC and POST_EXEC parameters in
lsb.queues to set up queue-level pre- and post-execution commands.

Post-execution job states
Some jobs may not be considered complete until some post-job processing is
performed. For example, a job may need to exit from a post-execution job
script, clean up job files, or transfer job output after the job completes.

The DONE or EXIT job states do not indicate whether post-processing is
complete, so jobs that depend on processing may start prematurely. Use the
post_done and post_err keywords on the bsub -w command to specify job
dependency conditions for job post-processing. The corresponding job states
POST_DONE and POST_ERR indicate the state of the post-processing.

The bhist command displays the POST_DONE and POST_ERR states. The
resource usage of post-processing is not included in the job resource usage.

After the job completes, you cannot perform any job control on the post-
processing. Post-processing exit codes are not reported to LSF. The post-
processing of a repetitive job cannot be longer than the repetition period.
Administering Platform LSF 311

Configuring Pre- and Post-Execution Commands

312
Configuring Pre- and Post-Execution Commands
Pre- and post-execution commands can be configured at the job level or on a
per-queue basis.

Job-level commands
Job-level pre-execution commands require no configuration. Use the bsub -E
option to specify an arbitrary command to run before the job starts.

Example The following example shows a batch job that requires a tape drive. The user
program tapeCheck exits with status zero if the specified tape drive is ready:

% bsub -E "/usr/share/bin/tapeCheck /dev/rmt01" myJob

Queue-level commands
Use the PRE_EXEC and POST_EXEC keywords in the queue definition
(lsb.queues) to specify pre- and post-execution commands.

The following points should be considered when setting up pre- and post-
execution commands at the queue level:

◆ If the pre-execution command exits with a non-zero exit code, then it is
considered to have failed and the job is requeued to the head of the queue.
This feature can be used to implement customized scheduling by having
the pre-execution command fail if conditions for dispatching the job are
not met.

◆ Other environment variables set for the job are also set for the pre- and
post-execution commands.

◆ When a job is dispatched from a queue which has a pre-execution
command, LSF will remember the post-execution command defined for the
queue from which the job is dispatched. If the job is later switched to
another queue or the post-execution command of the queue is changed,
LSF will still run the original post-execution command for this job.

◆ When the post-execution command is run, the environment variable,
LSB_JOBEXIT_STAT, is set to the exit status of the job. See the man page
for the wait(2) command for the format of this exit status.

◆ The post-execution command is also run if a job is requeued because the
job’s execution environment fails to be set up, or if the job exits with one
of the queue’s REQUEUE_EXIT_VALUES.

The LSB_JOBPEND environment variable is set if the job is requeued. If the
job’s execution environment could not be set up, LSB_JOBEXIT_STAT is set
to 0.

See “Automatic Job Requeue” on page 245 for more information.

◆ If both queue and job-level pre-execution commands are specified, the job-
level pre-execution is run after the queue-level pre-execution command.
Administering Platform LSF

Chapter 27
Pre-Execution and Post-Execution Commands

Administering Platform LSF 313

UNIX The entire contents of the configuration line of the pre- and post-execution
commands are run under /bin/sh -c, so shell features can be used in the
command.

For example, the following is valid:

PRE_EXEC = /usr/share/lsf/misc/testq_pre >> /tmp/pre.out
POST_EXEC = /usr/share/lsf/misc/testq_post | grep -v "Hey!"

The pre- and post-execution commands are run in /tmp.

Standard input and standard output and error are set to /dev/null. The
output from the pre- and post-execution commands can be explicitly
redirected to a file for debugging purposes.

The PATH environment variable is set to:

PATH='/bin /usr/bin /sbin /usr/sbin'

xe /c.

The output from
cted to a file for

 page 313.

.sudoers file.

and

r by default. Use
to specify a
mands.

 privileged

.sudoers file.
Windows The pre- and post-execution commands are run under cmd.e

Standard input and standard output and error are set to NULL.
the pre- and post-execution commands can be explicitly redire
debugging purposes.

See “LSB_PRE_POST_EXEC_USER parameter (lsf.sudoers)” on

See the Platform LSF Reference for information about the lsf

Example The following queue specifies the pre-execution command
/usr/share/lsf/pri_prexec and the post-execution comm
/usr/share/lsf/pri_postexec.

Begin Queue
QUEUE_NAME = priority
PRIORITY = 43
NICE = 10
PRE_EXEC = /usr/share/lsf/pri_prexec
POST_EXEC = /usr/share/lsf/pri_postexec
End Queue

LSB_PRE_POST_EXEC_USER parameter (lsf.sudoers)
Both the pre- and post-execution commands are run as the use
the LSB_PRE_POST_EXEC_USER parameter in lsf.sudoers
different user ID for queue-level pre- and post-execution com

Example For example, if the pre- or post-execution commands perform
operations that require root permission, specify:

LSB_PRE_POST_EXEC_USER=root

See the Platform LSF Reference for information about the lsf

Configuring Pre- and Post-Execution Commands

314
 Administering Platform LSF

C H A P T E R

28
Job Starters

A job starter is a specified shell script or executable program that sets up the
environment for a job and calls the LSF command that runs the job. This
chapter discusses two ways of running job starters in LSF and how to set up
and use them.

Contents ◆ “About Job Starters” on page 316

◆ “Command-Level Job Starters” on page 318

◆ “Queue-Level Job Starters” on page 320

◆ “Controlling Execution Environment Using Job Starters” on page 322
Administering Platform LSF 315

About Job Starters

316
About Job Starters
Some jobs have to run in a particular environment, or require some type of
setup to be performed before they run. In a shell environment, job setup is
often written into a wrapper shell script file that itself contains a call to start
the desired job.

A job starter is a specified wrapper script or executable program that typically
performs environment setup for the job, then calls the job itself, which inherits
the execution environment created by the job starter. LSF controls the job
starter process, rather than the job. One typical use of a job starter is to
customize LSF for use with specific application environments, such as Alias
Renderer or Rational ClearCase.

Two ways to run job starters
You run job starters two ways in LSF. You can accomplish similar things with
either job starter, but their functional details are slightly different.

Command-level
job starters

Are user-defined. They run interactive jobs submitted using lsrun, lsgrun, or
ch. Command-level job starters have no effect on batch jobs, including
interactive batch jobs run with bsub -I.

Use the LSF_JOB_STARTER environment variable to specify a job starter for
interactive jobs. See “Controlling Execution Environment Using Job Starters” on
page 322 for detailed information.

Queue-level job
starters

Defined by the LSF administrator, and run batch jobs submitted to a queue
defined with the JOB_STARTER parameter set. Queue-level job starters are run
using bsub.

A queue-level job starter is configured in the queue definition in lsb.queues.
See “Queue-Level Job Starters” on page 320 for detailed information.

Pre-execution commands are not job starters
A job starter differs from a pre-execution command. A pre-execution command
must run successfully and exit before the LSF job starts. It can signal LSF to
submit the job, but because the pre-execution command is an unrelated
process, it does not control the job or affect the execution environment of the
job. A job starter, however, is the process that LSF controls. It is responsible for
invoking LSF and controls the execution environment of the job.

See Chapter 27, “Pre-Execution and Post-Execution Commands” for more
information.
Administering Platform LSF

Chapter 28
Job Starters
Examples
The following are some examples of job starters:

◆ In UNIX, a job starter defined as /bin/ksh -c causes jobs to be run under
a Korn shell environment.

◆ In Windows, a job starter defined as C:\cmd.exe /C causes jobs to be run
under a DOS shell environment.

◆ Setting the JOB_STARTER parameter in lsb.queues to $USER_STARTER
enables users to define their own job starters by defining the environment
variable USER_STARTER.

◆ Setting a job starter to make clean causes the command make clean to
be run before the user job.

◆ Setting a job starter to pvmjob or mpijob allows you to run PVM or MPI
jobs with LSF, where pvmjob and mpijob are job starters for parallel jobs
written in PVM or MPI.
Administering Platform LSF 317

Command-Level Job Starters

318
Command-Level Job Starters
A command-level job starter allows you to specify an executable file that does
any necessary setup for the job and runs the job when the setup is complete.
You can select an existing command to be a job starter, or you can create a
script containing a desired set of commands to serve as a job starter.

This section describes how to set up and use a command-level job starter to
run interactive jobs.

Command-level job starters have no effect on batch jobs, including interactive
batch jobs. See Chapter 31, “Interactive Jobs with bsub” for information on
interactive batch jobs.

A job starter can also be defined at the queue level using the JOB_STARTER
parameter. Only the LSF administrator can configure queue-level job starters.
See “Queue-Level Job Starters” on page 320 for more information.

LSF_JOB_STARTER environment variable
Use the LSF_JOB_STARTER environment variable to specify a command or
script that is the job starter for the interactive job. When the environment
variable LSF_JOB_STARTER is defined, RES invokes the job starter rather than
running the job itself, and passes the job to the job starter as a command-line
argument.

Using command-level job starters

UNIX The job starter is invoked from within a Bourne shell, making the command-
line equivalent:

/bin/sh -c "$LSF_JOB_STARTER command [argument ...]"

where command and argument are the command-line arguments you specify
in lsrun, lsgrun, or ch.

Windows RES runs the job starter, passing it your commands as arguments:

LSF_JOB_STARTER command [argument ...]
Administering Platform LSF

Chapter 28
Job Starters
Examples

UNIX If you define the LSF_JOB_STARTER environment variable using the following
C-shell command:

% setenv LSF_JOB_STARTER "/bin/sh -c"

Then you run a simple C-shell job:

% lsrun "’a.out; hostname’"

The command that actually runs is:

/bin/sh -c "/bin/sh -c ’a.out hostname’"

The job starter can be a shell script. In the following example, the
LSF_JOB_STARTER environment variable is set to the Bourne shell script
named job_starter:

$ LSF_JOB_STARTER=/usr/local/job_starter

The job_starter script contains the following:

#!/bin/sh
set term = xterm
eval "$*"

Windows If you define the LSF_JOB_STARTER environment variable as follows:

% set LSF_JOB_STARTER=C:\cmd.exe /C

Then you run a simple DOS shell job:

C:\> lsrun dir /p

The command that actually runs is:

C:\cmd.exe /C dir /p
Administering Platform LSF 319

Queue-Level Job Starters

320
Queue-Level Job Starters
LSF administrators can define a job starter for an individual queue to create a
specific environment for jobs to run in. A queue-level job starter specifies an
executable that performs any necessary setup, and then runs the job when the
setup is complete. The JOB_STARTER parameter in lsb.queues specifies the
command or script that is the job starter for the queue.

This section describes how to set up and use a queue-level job starter.

Queue-level job starters have no effect on interactive jobs, unless the
interactive job is submitted to a queue as an interactive batch job. See
Chapter 31, “Interactive Jobs with bsub” for information on interactive batch
jobs.

LSF users can also select an existing command or script to be a job starter for
their interactive jobs using the LSF_JOB_STARTER environment variable. See
“Command-Level Job Starters” on page 318 for more information.

Configuring a queue-level job starter
Use the JOB_STARTER parameter in lsb.queues to specify a queue-level job
starter in the queue definition. All jobs submitted to this queue are run using
the job starter. The jobs are called by the specified job starter process rather
than initiated by the batch daemon process.

For example:

Begin Queue
.
JOB_STARTER = xterm -e
.
End Queue

All jobs submitted to this queue are run under an xterm terminal emulator.

JOB_STARTER parameter (lsb.queues)
The JOB_STARTER parameter in the queue definition (lsb.queues) has the
following format:

JOB_STARTER = starter [starter] [%USRCMD] [starter]

The string starter is the command or script that is used to start the job. It can
be any executable that can accept a job as an input argument. Optionally,
additional strings can be specified.

When starting a job, LSF runs the JOB_STARTER command, and passes the
shell script containing the job commands as the argument to the job starter. The
job starter is expected to do some processing and then run the shell script
containing the job commands. The command is run under /bin/sh -c and
can contain any valid Bourne shell syntax.
Administering Platform LSF

Chapter 28
Job Starters
%USRCMD string The special string %USRCMD indicates the position of the job starter command
in the job command line. By default, the user commands run after the job
starter, so the %USRCMD string is not usually required. For example, these two
job starters both give the same results:

JOB_STARTER = /bin/csh -c

JOB_STARTER = /bin/csh -c %USRCMD

You can also enclose the %USRCMD string in quotes or follow it with additional
commands. For example:

JOB_STARTER = /bin/csh -c "%USRCMD;sleep 10"

If a user submits the following job to the queue with this job starter:

% bsub myjob arguments

the command that actually runs is:

% /bin/csh -c "myjob arguments; sleep 10"

For more
information

See the Platform LSF Reference for information about the JOB_STARTER
parameter in the lsb.queues file.
Administering Platform LSF 321

Controlling Execution Environment Using Job Starters

322
Controlling Execution Environment Using Job Starters
In some cases, using bsub -L does not result in correct environment settings
on the execution host. LSF provides the following two job starters:

◆ preservestarter—preserves the default environment of the execution
host. It does not include any submission host settings.

◆ augmentstarter—augments the default user environment of the
execution host by adding settings from the submission host that are not
already defined on the execution host

bsub -L cannot be used for a Windows execution host.

Where the job starter executables are located
By default, the job starter executables are installed in LSF_BINDIR. If you prefer
to store them elsewhere, make sure they are in a directory that is included in
the default PATH on the execution host.

For example:

◆ On Windows, put the job starter under %WINDIR%.

◆ On UNIX, put the job starter under $HOME/bin.

Source code for
the job starters

The source code for the job starters is installed in LSF_MISC/examples.

Adding to the initial login environment
By default, the preservestarter job starter preserves the environment that
RES establishes on the execution host, and establishes an initial login
environment for the user with the following variables from the user’s login
environment on the execution host:

◆ HOME

◆ USER

◆ SHELL

◆ LOGNAME

Any additional environment variables that exist in the user’s login environment
on the submission host must be added to the job starter source code.
Administering Platform LSF

Chapter 28
Job Starters
Example A user’s .login script on the submission host contains the following setting:

if ($TERM != "xterm") then
set TERM=`tset - -Q -m 'switch:?vt100'

else
stty -tabs

endif

The TERM environment variable must also be included in the environment on
the execution host for login to succeed. If it is missing in the job starter, the
login fails, the job starter may fail as well. If the job starter can continue with
only the intial environment settings, the job may execute correctly, but this is
not likely.
Administering Platform LSF 323

Controlling Execution Environment Using Job Starters

324
 Administering Platform LSF

C H A P T E R

29
External Job Submission and

Execution Controls

This document describes the use of external job submission and execution
controls called esub and eexec. These site-specific user-written executables
are used to validate, modify, and reject job submissions, pass data to and
modify job execution environments.

Contents ◆ “Understanding External Executables” on page 326

◆ “Using esub” on page 327

◆ “Working with eexec” on page 332
Administering Platform LSF 325

Understanding External Executables

326
Understanding External Executables

About esub and eexec
LSF provides the ability to validate, modify, or reject job submissions, modify
execution environments, and pass data from the submission host directly to the
execution host through the use of the esub and eexec executables. Both are
site-specific and user written and must be located in LSF_SERVERDIR.

Validate, modify,
or reject a job

To validate, modify, or reject a job, an esub needs to be written. See “Using
esub” on page 327

Modifying
execution

environments

To modify the execution environment on the execution host, an eexec needs
to be written. See “Working with eexec” on page 332

Passing data To pass data directly to the execution host, an esub and eexec need to be
written. See “Using esub and eexec to pass data to execution environments”
on page 332

Interactive remote execution
Interactive remote execution also runs esub and eexec if they are found in
LSF_SERVERDIR. For example, lsrun invokes esub, and RES runs eexec
before starting the task. esub is invoked at the time of the ls_connect(3) call,
and RES invokes eexec each time a remote task is executed. RES runs eexec
only at task startup time.

DCE credentials and AFS tokens
esub and eexec are also used for processing DCE credentials and AFS tokens.
See the following documents on the Platform Web site for more information:

◆ “Installing LSF on AFS”

◆ “Installing LSF on DCE/DFS”
Administering Platform LSF

http://www.platform.com/services/support/docs/lsfdoc42/pdf/spec_env/lsf_afs.pdf
http://www.platform.com/services/support/docs/lsfdoc42/pdf/spec_env/lsf_dcedfs.pdf

Chapter 29
External Job Submission and Execution Controls
Using esub

About esub
An esub, short for external submission, is a user-written executable (binary or
script) that can be used to validate, modify, or reject jobs. The esub is put into
LSF_SERVERDIR (defined in lsf.conf) where LSF checks for its existence
when a job is submitted, restarted, and modified. If LSF finds an esub, it is run
by LSF. Whether the job is submitted, modified, or rejected depends on the
logic built into the esub.

Any messages that need to be provided to the user should be directed to the
standard error (stderr) stream and not the standard output (stdout) stream.

In this section ◆ “Environment variables to bridge esub and LSF” on page 327

◆ “General esub logic” on page 329

◆ “Rejecting jobs” on page 330

◆ “Validating job submission parameters” on page 330

◆ “Modifying job submission parameters” on page 331

Environment variables to bridge esub and LSF
LSF provides the following environment variables in the esub execution
environment:

LSB_SUB_PARM_FILE
This variable points to a file containing the job parameters that esub reads
when the job is submitted. The submission parameters are a set of name-value
pairs on separate lines in the format "option_name=value". The following
option names are supported:

Option Description

LSB_SUB_ADDITIONAL Arbitrary string format parameter containing the value of the -a
option to bsub
The value of -a is passed to esub, but it does not directly affect
the other bsub parameters or behavior.

LSB_SUB_BEGIN_TIME Begin time, in seconds since 00:00:00 GMT, Jan. 1, 1970

LSB_SUB_CHKPNT_DIR Checkpoint directory

LSB_SUB_COMMAND_LINE Job command

LSB_SUB_CHKPNT_PERIOD Checkpoint period

LSB_SUB_DEPEND_COND Dependency condition

LSB_SUB_ERR_FILE Standard error file name

LSB_SUB_EXCEPTION Exception condition

LSB_SUB_EXCLUSIVE "Y" specifies exclusive execution

LSB_SUB_EXTSCHED_PARAM Validate or modify bsub -extsched option

LSB_SUB_HOST_SPEC Host specifier

LSB_SUB_HOSTS List of execution host names
Administering Platform LSF 327

Using esub

328
LSB_SUB_IN_FILE Standard input file name

LSB_SUB_INTERACTIVE "Y" specifies an interactive job

LSB_SUB_LOGIN_SHELL Login shell

LSB_SUB_JOB_NAME Job name

LSB_SUB_MAIL_USER Email address used by LSF for sending job email

LSB_SUB_MAX_NUM_PROCESS
ORS

Maximum number of processors requested

LSB_SUB_MODIFY "Y" specifies a modification request

LSB_SUB_MODIFY_ONCE "Y" specifies a modification-once request

LSB_SUB_NOTIFY_BEGIN "Y" specifies email notification when job begins

LSB_SUB_NOTIFY_END "Y" specifies email notification when job ends

LSB_SUB_NUM_PROCESSORS Minimum number of processors requested

LSB_SUB_OTHER_FILES Always "SUB_RESET" if defined to indicate a bmod is being
performed to reset the number of files to be transferred

LSB_SUB_OTHER_FILES_number number is an index number indicating the particular file
transfer value is the specified file transfer expression.
For example, for bsub -f "a > b" -f "c < d", the
following would be defined:
◆ LSB_SUB_OTHER_FILES_0="a > b"
◆ LSB_SUB_OTHER_FILES_1="c < d"

LSB_SUB_OUT_FILE Standard output file name

LSB_SUB_PRE_EXEC Pre-execution command

LSB_SUB_PROJECT_NAME Project name

LSB_SUB_PTY "Y" specifies an interactive job with PTY support

LSB_SUB_PTY_SHELL "Y" specifies an interactive job with PTY shell support

LSB_SUB_QUEUE Submission queue name

LSB_SUB_RERUNNABLE "Y" specifies a rerunnable job

LSB_SUB_RES_REQ Resource requirement string

LSB_SUB_RESTART "Y" specifies a restart job

LSB_SUB_RESTART_FORCE "Y" specifies forced restart job

LSB_SUB_RLIMIT_CORE Core file size limit

LSB_SUB_RLIMIT_CPU CPU limit

LSB_SUB_RLIMIT_DATA Data size limit

LSB_SUB_RLIMIT_FSIZE File size limit

LSB_SUB_RLIMIT_RSS Resident size limit

LSB_SUB_RLIMIT_RUN Wall clock run limit

LSB_SUB_RLIMIT_STACK Stack size limit

LSB_SUB_TERM_TIME Termination time, in seconds, since 00:00:00 GMT, Jan. 1, 1970

LSB_SUB_TIME_EVENT Time event expression

LSB_SUB_USER_GROUP User group name

LSB_SUB_WINDOW_SIG Window signal number

Option Description
Administering Platform LSF

Chapter 29
External Job Submission and Execution Controls
Example submission parameter file
If a user submits the following job:

% bsub -q normal -x -P my_project -R “r1m rusage[dummy=1]” -n 90 sleep 10

The contents of the LSB_SUB_PARM_FILE will be:

LSB_SUB_QUEUE="normal"
LSB_SUB_EXCLUSIVE=Y
LSB_SUB_RES_REQ="r1m rusage[dummy=1]"
LSB_SUB_PROJECT_NAME="my_project"
LSB_SUB_COMMAND_LINE="sleep 10"
LSB_SUB_NUM_PROCESSORS=90
LSB_SUB_MAX_NUM_PROCESSORS=90

LSB_SUB_ABORT_VALUE
This variable indicates the value esub should exit with if LSF is to reject the
job submission.

LSB_SUB_MODIFY_ENVFILE
The file in which esub should write any changes to the job environment
variables.

esub writes the variables to be modified to this file in the same format used in
LSB_SUB_PARM_FILE. The order of the variables does not matter.

After esub runs, LSF checks LSB_SUB_MODIFY_ENVFILE for changes and if
found, LSF will apply them to the job environment variables.

LSB_SUB_MODIFY_FILE
The file in which esub should write any submission parameter changes.

esub writes the job options to be modified to this file in the same format used
in LSB_SUB_PARM_FILE. The order of the options does not matter. After esub
runs, LSF checks LSB_SUB_MODIFY_FILE for changes and if found LSF will
apply them to the job.

General esub logic
After esub runs, LSF checks:

1 Is the esub exit value LSB_SUB_ABORT_VALUE?

a Yes, step 2

b No, step 4

2 Reject the job

3 Go to step 5

4 Does LSB_SUB_MODIFY_FILE or LSB_SUB_MODIFY_ENVFILE exist?

❖ Apply changes

5 Done
Administering Platform LSF 329

Using esub

330
Rejecting jobs
Depending on your policies you may choose to reject a job. To do so, have
esub exit with LSB_SUB_ABORT_VALUE.

If esub rejects the job, it should not write to either LSB_SUB_MODIFY_FILE or
LSB_SUB_MODIFY_ENVFILE.

Example The following Bourne shell esub rejects all job submissions by exiting with
LSB_SUB_ABORT_VALUE:

#!/bin/sh

Redirect stderr to stdout so echo can be used for
error messages
exec 1>&2

Reject the submission
echo "LSF is Rejecting your job submission..."
exit $LSB_SUB_ABORT_VALUE

Validating job submission parameters
One use of validation is to support project-based accounting. The user can
request that the resources used by a job be charged to a particular project.
Projects are associated with a job at job submission time, so LSF will accept any
arbitrary string for a project name. In order to ensure that only valid projects
are entered and the user is eligible to charge to that project, an esub can be
written.

Example The following Bourne shell esub validates job submission parameters:

#!/bin/sh

. $LSB_SUB_PARM_FILE

Redirect stderr to stdout so echo can be used for error messages
exec 1>&2

Check valid projects
if [$LSB_SUB_PROJECT_NAME != "proj1" -o $LSB_SUB_PROJECT_NAME != "proj2"]; then

echo "Incorrect project name specified"
exit $LSB_SUB_ABORT_VALUE

fi

USER=`whoami`
if [$LSB_SUB_PROJECT_NAME = "proj1"]; then

Only user1 and user2 can charge to proj1
if [$USER != "user1" -a $USER != "user2"]; then

echo "You are not allowed to charge to this project"
exit $LSB_SUB_ABORT_VALUE

fi
fi
Administering Platform LSF

Chapter 29
External Job Submission and Execution Controls
Modifying job submission parameters
esub can be used to modify submission parameters and the job environment
before the job is actually submitted.

The following example writes modifications to LSB_SUB_MODIFY_FILE for
the following parameters:

◆ LSB_SUB_QUEUE

◆ USER

◆ SHELL

In the example, user userA can only submit jobs to queue queueA. User userB
must use Bourne shell (/bin/sh), and user userC should never be able to
submit a job.

#!/bin/sh
. $LSB_SUB_PARM_FILE

Redirect stderr to stdout so echo can be used for error messages
exec 1>&2

USER=`whoami`
Ensure userA is using the right queue queueA
if [$USER="userA" -a $LSB_SUB_QUEUE != "queueA"]; then

echo "userA has submitted a job to an incorrect queue"
echo "...submitting to queueA"
echo 'LSB_SUB_QUEUE="queueA"' > $LSB_SUB_MODIFY_FILE

fi

Ensure userB is using the right shell (/bin/sh)
if [$USER="userB" -a $SHELL != "/bin/sh"]; then

echo "userB has submitted a job using $SHELL"
echo "...using /bin/sh instead"
echo 'SHELL="/bin/sh"' > $LSB_SUB_MODIFY_ENVFILE

fi

Deny userC the ability to submit a job
if [$USER="userC"]; then

echo "You are not permitted to submit a job."
exit $LSB_SUB_ABORT_VALUE

fi

The bmod and brestart commands and esub
You can use the bmod command to modify job submission parameters, and
brestart to restart checkpointed jobs. Like bsub, bmod and brestart also
call esub if it exists. bmod and brestart cannot make changes to the job
environment through esub. Environment changes only occur when esub is
called by the original job submission with bsub.
Administering Platform LSF 331

Working with eexec

332
Working with eexec

About eexec
The eexec program runs on the execution host at job start-up and completion
time and when checkpointing is initiated. It is run as the user after the job
environment variables have been set. The environment variable LS_EXEC_T is
set to START, END, and CHKPNT, respectively, to indicate when eexec is
invoked.

If you need to run eexec as a different user, such as root, you must properly
define LSF_EEXEC_USER in the file /etc/lsf.sudoers. See the Platform LSF
Reference for information about the lsf.sudoers file.

eexec is expected to finish running because the parent job process waits for
eexec to finish running before proceeding. The environment variable
LS_JOBPID stores the process ID of the process that invoked eexec. If eexec
is intended to monitor the execution of the job, eexec must fork a child and
then have the parent eexec process exit. The eexec child should periodically
test that the job process is still alive using the LS_JOBPID variable.

Using esub and eexec to pass data to execution environments
If esub needs to pass some data to eexec, it can write the data to its standard
output for eexec to read from its standard input. LSF effectively acts as the pipe
between esub and eexec (e.g., esub | eexec).
Administering Platform LSF

C H A P T E R

30
Configuring Job Controls

After a job is started, it can be killed, suspended, or resumed by the system, an
LSF user, or LSF administrator. LSF job control actions cause the status of a job
to change. This chapter describes how to configure job control actions to
override or augment the default job control actions.

Contents ◆ “Default Job Control Actions” on page 334

◆ “Configuring Job Control Actions” on page 336

◆ “Customizing Cross-Platform Signal Conversion” on page 339
Administering Platform LSF 333

Default Job Control Actions

334
Default Job Control Actions
After a job is started, it can be killed, suspended, or resumed by the system, an
LSF user, or LSF administrator. LSF job control actions cause the status of a job
to change. LSF supports the following default actions for job controls:

◆ SUSPEND

◆ RESUME

◆ TERMINATE

On successful completion of the job control action, the LSF job control
commands cause the status of a job to change.

The environment variable LS_EXEC_T is set to the value JOB_CONTROLS for
a job when a job control action is initiated.

See “Killing Jobs” on page 101 for more information about job controls and the
LSF commands that perform them.

SUSPEND action
Change a running job from RUN state to one of the following states:

◆ USUSP or PSUSP in response to bstop or bkill

◆ SSUSP state when the LSF system suspends the job

The default action is to send the following signals to the job:

◆ SIGTSTP for parallel or interactive jobs

SIGTSTP is caught by the master process and passed to all the slave
processes running on other hosts.

◆ SIGSTOP for sequential jobs

SIGSTOP cannot be caught by user programs. The SIGSTOP signal can be
configured with the LSB_SIGSTOP parameter in lsf.conf.

LSF invokes the SUSPEND action when:

◆ The user or LSF administrator issues a bstop or bkill command to the job

◆ Load conditions on the execution host satisfy any of:

❖ The suspend conditions of the queue, as specified by the STOP_COND
parameter in lsb.queues

❖ The scheduling thresholds of the queue or the execution host

◆ The run window of the queue closes

◆ The job is preempted by a higher priority job

◆ The job reaches its RUNLIMIT or its PROCESSLIMIT
Administering Platform LSF

Chapter 30
Configuring Job Controls
RESUME action
Change a suspended job from SSUSP, USUSP, or PSUSP state to the RUN state.
The default action is to send the signal SIGCONT.

LSF invokes the RESUME action when:

◆ The user or LSF administrator issues a bresume command to the job

◆ Load conditions on the execution host satisfy all of:

❖ The resume conditions of the queue, as specified by the
RESUME_COND parameter in lsb.queues

❖ The scheduling thresholds of the queue and the execution host

◆ A closed run window of the queue opens again

◆ A preempted job finishes

TERMINATE action
Terminate a job. This usually causes the job change to EXIT status. The default
action is to send SIGINT first, then send SIGTERM 10 seconds after SIGINT,
then send SIGKILL 10 seconds after SIGTERM. The delay between signals
allows user programs to catch the signals and clean up before the job
terminates.

To override the 10 second interval, use the parameter
JOB_TERMINATE_INTERVAL in the lsb.params file. See the Platform LSF
Reference for information about the lsb.params file.

LSF invokes the TERMINATE action when:

◆ The user or LSF administrator issues a bkill or brequeue command to the
job

◆ The TERMINATE_WHEN parameter causes a SUSPEND action to be
redirected to TERMINATE

◆ The job reaches its CPULIMIT, MEMLIMIT, RUNLIMIT or PROCESSLIMIT

If the execution of an action is in progress, no further actions are initiated
unless it is the TERMINATE action. A TERMINATE action is issued for all job
states except PEND.

Windows job control actions
On Windows, actions equivalent to the UNIX signals have been implemented
to do the default job control actions. Job control messages replace the SIGINT
and SIGTERM signals, but only customized applications will be able to process
them. Termination is implemented by the TerminateProcess() system call.

See Using the Platform LSF SDK for more information about LSF signal handling
on Windows.
Administering Platform LSF 335

Configuring Job Control Actions

336
Configuring Job Control Actions
Several situations may require overriding or augmenting the default actions for
job control. For example:

◆ Notifying users when their jobs are suspended, resumed, or terminated

◆ An application holds resources (for example, licenses) that are not freed
by suspending the job. The administrator can set up an action to be
performed that causes the license to be released before the job is
suspended and re-acquired when the job is resumed.

◆ The administrator wants the job checkpointed before being:

❖ Suspended when a run window closes

❖ Killed when the RUNLIMIT is reached

◆ A distributed parallel application must receive a catchable signal when the
job is suspended, resumed or terminated to propagate the signal to remote
processes.

To override the default actions for the SUSPEND, RESUME, and TERMINATE
job controls, specify the JOB_CONTROLS parameter in the queue definition in
lsb.queues.

JOB_CONTROLS parameter (lsb.queues)
The JOB_CONTROLS parameter has the following format:

Begin Queue
...
JOB_CONTROLS = SUSPEND[signal | CHKPNT | command] \

RESUME[signal | command] \
TERMINATE[signal | CHKPNT | command]

...
End Queue

When LSF needs to suspend, resume, or terminate a job, it invokes one of the
following actions as specified by SUSPEND, RESUME, and TERMINATE:

signal A UNIX signal name (for example, SIGTSTP or SIGTERM). The specified signal
is sent to the job.

The same set of signals is not supported on all UNIX systems. To display a list
of the symbolic names of the signals (without the SIG prefix) supported on
your system, use the kill -l command.

CHKPNT Checkpoint the job. Only valid for SUSPEND and TERMINATE actions.

◆ If the SUSPEND action is CHKPNT, the job is checkpointed and then
stopped by sending the SIGSTOP signal to the job automatically.

◆ If the TERMINATE action is CHKPNT, then the job is checkpointed and
killed automatically.
Administering Platform LSF

Chapter 30
Configuring Job Controls
command A /bin/sh command line. Do not quote the command line inside an action
definition.

See the Platform LSF Reference for information about the lsb.queues file.

Using a command as a job control action
The following apply to a job control action that is a command:

◆ The command line for the action is run with /bin/sh -c so you can use
shell features in the command.

◆ The command is run as the user of the job.

◆ All environment variables set for the job are also set for the command
action.

The following additional environment variables are set:

❖ LSB_JOBPGIDS—a list of current process group IDs of the job

❖ LSB_JOBPIDS—a list of current process IDs of the job

◆ For the SUSPEND action command, the following environment variable is
also set:

LSB_SUSP_REASONS—an integer representing a bitmap of suspending
reasons as defined in lsbatch.h.

The suspending reason can allow the command to take different actions
based on the reason for suspending the job.

◆ The standard input, output, and error of the command are redirected to the
NULL device, so you cannot tell directly whether the command runs
correctly. The default null device on UNIX is /dev/null.

You should make sure the command line is correct. If you want to see the
output from the command line for testing purposes, redirect the output to
a file inside the command line.

TERMINATE job actions
Use caution when configuring TERMINATE job actions that do more than just
kill a job. For example, resource usage limits that terminate jobs change the
job state to SSUSP while LSF waits for the job to end. If the job is not killed by
the TERMINATE action, it remains suspended indefinitely.
Administering Platform LSF 337

Configuring Job Control Actions

338
TERMINATE_WHEN parameter (lsb.queues)
In certain situations you may want to terminate the job instead of calling the
default SUSPEND action. For example, you may want to kill jobs if the run
window of the queue is closed. Use the TERMINATE_WHEN parameter to
configure the queue to invoke the TERMINATE action instead of SUSPEND.

See the Platform LSF Reference for information about the lsb.queues file.

Syntax TERMINATE_WHEN = WINDOW | LOAD | PREEMPT

Example The following defines a night queue that will kill jobs if the run window closes.

Begin Queue
NAME = night
RUN_WINDOW = 20:00-08:00
TERMINATE_WHEN = WINDOW
JOB_CONTROLS = TERMINATE[kill -KILL $LSB_JOBPIDS;

echo "job $LSB_JOBID killed by queue run window" |
mail $USER]

End Queue

LSB_SIGSTOP parameter (lsf.conf)
Use LSB_SIGSTOP to configure the SIGSTOP signal sent by the default
SUSPEND action.

If LSB_SIGSTOP is set to anything other than SIGSTOP, the SIGTSTP signal that
is normally sent by the SUSPEND action is not sent. For example, if
LSB_SIGSTOP=SIGKILL, the three default signals sent by the TERMINATE
action (SIGINT, SIGTERM, and SIGKILL) are sent 10 seconds apart.

See the Platform LSF Reference for information about the lsf.conf file.

Avoiding signal and action deadlock
Do not configure a job control to contain the signal or command that is the
same as the action associated with that job control. This will cause a deadlock
between the signal and the action.

For example, the bkill command uses the TERMINATE action, so a deadlock
results when the TERMINATE action itself contains the bkill command.

Any of the following job control specifications will cause a deadlock:

◆ JOB_CONTROLS=TERMINATE[bkill]

◆ JOB_CONTROLS=TERMINATE[brequeue]

◆ JOB_CONTROLS=RESUME[bresume]

◆ JOB_CONTROLS=SUSPEND[bstop]
Administering Platform LSF

Chapter 30
Configuring Job Controls
Customizing Cross-Platform Signal Conversion
LSF supports signal conversion between UNIX and Windows for remote
interactive execution through RES.

On Windows, the CTRL+C and CTRL+BREAK key combinations are treated as
signals for console applications (these signals are also called console control
actions).

LSF supports these two Windows console signals for remote interactive
execution. LSF regenerates these signals for user tasks on the execution host.

Default signal conversion
In a mixed Windows/UNIX environment, LSF has the following default
conversion between the Windows console signals and the UNIX signals:

For example, if you issue the lsrun or bsub -I commands from a Windows
console but the task is running on an UNIX host, pressing the CTRL+C keys
will generate a UNIX SIGINT signal to your task on the UNIX host. The
opposite is also true.

Custom signal conversion
For lsrun (but not bsub -I), LSF allows you to define your own signal
conversion using the following environment variables:

◆ LSF_NT2UNIX_CLTRC

◆ LSF_NT2UNIX_CLTRB

For example, suppose a you set the following:

◆ LSF_NT2UNIX_CLTRC=SIGXXXX

◆ LSF_NT2UNIX_CLTRB=SIGYYYY

Here, SIGXXXX/SIGYYYY are UNIX signal names such as SIGQUIT, SIGTINT,
etc. The conversions will then be: CTRL+C=SIGXXXX and
CTRL+BREAK=SIGYYYY.

If both LSF_NT2UNIX_CLTRC and LSF_NT2UNIX_CLTRB are set to the same
value (LSF_NT2UNIX_CLTRC=SIGXXXX and
LSF_NT2UNIX_CLTRB=SIGXXXX), CTRL+C will be generated on the Windows
execution host.

For bsub -I, there is no conversion other than the default conversion.

Windows UNIX

CTRL+C SIGINT

CTRL+BREAK SIGQUIT
Administering Platform LSF 339

Customizing Cross-Platform Signal Conversion

340
 Administering Platform LSF

P A R T

VI
Interactive Jobs

Contents ◆ Chapter 31, “Interactive Jobs with bsub”

◆ Chapter 32, “Running Interactive and Remote Tasks”

C H A P T E R

31
Interactive Jobs with bsub

Contents ◆ “About Interactive Jobs” on page 344

◆ “Submitting Interactive Jobs” on page 345

◆ “Performance Tuning for Interactive Batch Jobs” on page 348

◆ “Interactive Batch Job Messaging” on page 351

◆ “Running X Applications with bsub” on page 353

◆ “Writing Job Scripts” on page 354

◆ “Registering utmp File Entries for Interactive Batch Jobs” on page 357
Administering Platform LSF 343

About Interactive Jobs

344
About Interactive Jobs
It is sometimes desirable from a system management point of view to control
all workload through a single centralized scheduler.

Running an interactive job through the LSF batch system allows you to take
advantage of batch scheduling policies and host selection features for
resource-intensive jobs. You can submit a job and the least loaded host is
selected to run the job.

Since all interactive batch jobs are subject to LSF policies, you will have more
control over your system. For example, you may dedicate two servers as
interactive servers, and disable interactive access to all other servers by
defining a interactive queue that only uses the two interactive servers.

Scheduling policies
Running an interactive batch job allows you to take advantage of batch
scheduling policies and host selection features for resource-intensive jobs.

An interactive batch job is scheduled using the same policy as all other jobs in
a queue. This means an interactive job can wait for a long time before it gets
dispatched. If fast response time is required, interactive jobs should be
submitted to high-priority queues with loose scheduling constraints.

Interactive queues
You can configure a queue to be interactive-only, batch-only, or both
interactive and batch with the parameter INTERACTIVE in lsb.queues.

See the Platform LSF Reference for information about configuring interactive
queues in the lsb.queues file.

Interactive jobs with non-batch utilities
Non-batch utilities such as lsrun, lsgrun, etc., use LIM simple placement
advice for host selection when running interactive tasks. For more details on
using non-batch utilities to run interactive tasks, see “Running Interactive and
Remote Tasks” on page 359.
Administering Platform LSF

Chapter 31
Interactive Jobs with bsub
Submitting Interactive Jobs
Use the bsub -I option to submit batch interactive jobs, and the bsub -Is
and -Ip options to submit batch interactive jobs in pseudo-terminals.

Pseudo-terminals are not supported for Windows.

For more details, see the bsub(1) man page.

Finding out which queues accept interactive jobs
Before you submit an interactive job, you need to find out which queues
accept interactive jobs with the bqueues -l command.

If the output of this command contains the following, this is a batch-only
queue. This queue does not accept interactive jobs:

SCHEDULING POLICIES: NO_INTERACTIVE

If the output contains the following, this is an interactive-only queue:

SCHEDULING POLICIES: ONLY_INTERACTIVE

If none of the above are defined or if SCHEDULING POLICIES is not in the
output of bqueues -l, both interactive and batch jobs are accepted by the
queue.

You configure interactive queues in the lsb.queues file.

Submitting an interactive job
Use the bsub -I option to submit and interactive batch job. Your job can be
submitted so that all input and output are through the terminal that you used
to type the command.

A new job cannot be submitted until the interactive job is completed or
terminated.

When an interactive job is submitted, a message is displayed while the job is
awaiting scheduling. The bsub command stops display of output from the shell
until the job completes, and no mail is sent to the user by default. A user can
issue a ctrl-c at any time to terminate the job.

Interactive jobs cannot be checkpointed.

Examples ◆ % bsub -I ls

Submits a batch interactive job which displays the output of ls at the user’s
terminal.

◆ % bsub -I -q interactive -n 4,10 lsmake
<<Waiting for dispatch ...>>

This example starts LSF Make on 4 to 10 processors and displays the output
on the terminal.
Administering Platform LSF 345

Submitting Interactive Jobs

346
Submitting an interactive job by using a pseudo-terminal
Submission of interaction jobs using pseudo-terminal is not supported for
Windows for either lsrun or bsub LSF commands.

bsub -Ip To submit a batch interactive job by using a pseudo-terminal, use the bsub -
Ip option.

When you specify the -Ip option, bsub submits a batch interactive job and
creates a pseudo-terminal when the job starts. Some applications such as vi
for example, require a pseudo-terminal in order to run correctly.

For example:

% bsub -Ip vi myfile

Submits a batch interactive job to edit myfile.

bsub -Is To submit a batch interactive job and create a pseudo-terminal with shell mode
support, use the bsub -Is option.

When you specify the -Is option, bsub submits a batch interactive job and
creates a pseudo-terminal with shell mode support when the job starts. This
option should be specified for submitting interactive shells, or applications
which redefine the CTRL-C and CTRL-Z keys (for example, jove).

Example:

% bsub -Is csh

Submits a batch interactive job that starts up csh as an interactive shell.

Submitting an interactive job and redirect streams to files

bsub -i, -o, -e It is possible to use the -I option together with the -i, -o, and -e options of
bsub to selectively redirect streams to files. For more details, see the bsub(1)
man page.

For example:

% bsub -I -q interactive -e job.err lsmake

Saves the standard error stream in the job.err file, while standard input and
output come from the terminal.
Administering Platform LSF

Chapter 31
Interactive Jobs with bsub
Split stdout and
stderr

If in your environment there is a wrapper around bsub and LSF commands so
that end-users are unaware of LSF and LSF-specific options, you redirect
standard output and standard error of batch interactive jobs to a file with the
> operator.

By default, both standard error messages and output messages for batch
interactive jobs are written to stdout on the submission host.

For example:

% bsub -I myjob 2>mystderr 1>mystdout

In the above example, both stderr and stdout are written to mystdout.

To redirect both stdout and stderr to different files, set
LSF_INTERACTIVE_STDERR=y in lsf.conf or as an environment variable.
For example, with LSF_INTERACTIVE_STDERR set:

% bsub -I myjob 2>mystderr 1>mystdout

stderr is redirected to mystderr, and stdout to mystdout.

See the Platform LSF Reference for more details on
LSF_INTERACTIVE_STDERR.
Administering Platform LSF 347

Performance Tuning for Interactive Batch Jobs

348
Performance Tuning for Interactive Batch Jobs
LSF is often used on systems that support both interactive and batch users. On
one hand, users are often concerned that load sharing will overload their
workstations and slow down their interactive tasks. On the other hand, some
users want to dedicate some machines for critical batch jobs so that they have
guaranteed resources. Even if all your workload is batch jobs, you still want to
reduce resource contentions and operating system overhead to maximize the
use of your resources.

Numerous parameters can be used to control your resource allocation and to
avoid undesirable contention.

Types of load conditions
Since interferences are often reflected from the load indices, LSF responds to
load changes to avoid or reduce contentions. LSF can take actions on jobs to
reduce interference before or after jobs are started. These actions are triggered
by different load conditions. Most of the conditions can be configured at both
the queue level and at the host level. Conditions defined at the queue level
apply to all hosts used by the queue, while conditions defined at the host level
apply to all queues using the host.

Scheduling
conditions

These conditions, if met, trigger the start of more jobs. The scheduling
conditions are defined in terms of load thresholds or resource requirements.

At the queue level, scheduling conditions are configured as either resource
requirements or scheduling load thresholds, as described in lsb.queues. At
the host level, the scheduling conditions are defined as scheduling load
thresholds, as described in lsb.hosts.

Suspending
conditions

These conditions affect running jobs. When these conditions are met, a
SUSPEND action is performed to a running job.

At the queue level, suspending conditions are defined as STOP_COND as
described in lsb.queues or as suspending load threshold. At the host level,
suspending conditions are defined as stop load threshold as described in
lsb.hosts.

Resuming
conditions

These conditions determine when a suspended job can be resumed. When
these conditions are met, a RESUME action is performed on a suspended job.

At the queue level, resume conditions are defined as by RESUME_COND in
lsb.queues, or by the loadSched thresholds for the queue if RESUME_COND
is not defined.
Administering Platform LSF

Chapter 31
Interactive Jobs with bsub
Types of load indices
To effectively reduce interference between jobs, correct load indices should be
used properly. Below are examples of a few frequently used parameters.

Paging rate (pg) The paging rate (pg) load index relates strongly to the perceived interactive
performance. If a host is paging applications to disk, the user interface feels
very slow.

The paging rate is also a reflection of a shortage of physical memory. When an
application is being paged in and out frequently, the system is spending a lot
of time performing overhead, resulting in reduced performance.

The paging rate load index can be used as a threshold to either stop sending
more jobs to the host, or to suspend an already running batch job to give
priority to interactive users.

This parameter can be used in different configuration files to achieve different
purposes. By defining paging rate threshold in lsf.cluster.cluster_name,
the host will become busy from LIM’s point of view; therefore, no more jobs
will be advised by LIM to run on this host.

By including paging rate in queue or host scheduling conditions, jobs can be
prevented from starting on machines with a heavy paging rate, or can be
suspended or even killed if they are interfering with the interactive user on the
console.

A job suspended due to pg threshold will not be resumed even if the resume
conditions are met unless the machine is interactively idle for more than
PG_SUSP_IT seconds.

Interactive idle
time (it)

Strict control can be achieved using the idle time (it) index. This index
measures the number of minutes since any interactive terminal activity.
Interactive terminals include hard wired ttys, rlogin and lslogin sessions,
and X shell windows such as xterm. On some hosts, LIM also detects mouse
and keyboard activity.

This index is typically used to prevent batch jobs from interfering with
interactive activities. By defining the suspending condition in the queue as
it<1 && pg>50, a job from this queue will be suspended if the machine is not
interactively idle and the paging rate is higher than 50 pages per second.
Furthermore, by defining the resuming condition as it>5 && pg<10 in the
queue, a suspended job from the queue will not resume unless it has been idle
for at least five minutes and the paging rate is less than ten pages per second.

The it index is only non-zero if no interactive users are active. Setting the it
threshold to five minutes allows a reasonable amount of think time for
interactive users, while making the machine available for load sharing, if the
users are logged in but absent.

For lower priority batch queues, it is appropriate to set an it suspending
threshold of two minutes and scheduling threshold of ten minutes in the
lsb.queues file. Jobs in these queues are suspended while the execution host
Administering Platform LSF 349

Performance Tuning for Interactive Batch Jobs

350
is in use, and resume after the host has been idle for a longer period. For hosts
where all batch jobs, no matter how important, should be suspended, set a per-
host suspending threshold in the lsb.hosts file.

CPU run queue
length (r15s, r1m,

r15m)

Running more than one CPU-bound process on a machine (or more than one
process per CPU for multiprocessors) can reduce the total throughput because
of operating system overhead, as well as interfering with interactive users.
Some tasks such as compiling can create more than one CPU-intensive task.

Queues should normally set CPU run queue scheduling thresholds below 1.0,
so that hosts already running compute-bound jobs are left alone. LSF scales the
run queue thresholds for multiprocessor hosts by using the effective run queue
lengths, so multiprocessors automatically run one job per processor in this
case.

For concept of effective run queue lengths, see lsfintro(1).

For short to medium-length jobs, the r1m index should be used. For longer
jobs, you might want to add an r15m threshold. An exception to this are high
priority queues, where turnaround time is more important than total
throughput. For high priority queues, an r1m scheduling threshold of 2.0 is
appropriate.

CPU utilization
(ut)

The ut parameter measures the amount of CPU time being used. When all the
CPU time on a host is in use, there is little to gain from sending another job to
that host unless the host is much more powerful than others on the network.
A ut threshold of 90% prevents jobs from going to a host where the CPU does
not have spare processing cycles.

If a host has very high pg but low ut, then it may be desirable to suspend some
jobs to reduce the contention.

Some commands report ut percentage as a number from 0-100, some report it
as a decimal number between 0-1. The configuration parameter in the
lsf.cluster.cluster_name file and the configuration files take a fraction in
the range from 0 to 1, while the bsub -R resource requirement string takes an
integer from 1-100.

The command bhist shows the execution history of batch jobs, including the
time spent waiting in queues or suspended because of system load.

The command bjobs -p shows why a job is pending.

Scheduling conditions and resource thresholds
Three parameters, RES_REQ, STOP_COND and RESUME_COND, can be
specified in the definition of a queue. Scheduling conditions are a more
general way for specifying job dispatching conditions at the queue level. These
parameters take resource requirement strings as values which allows you to
specify conditions in a more flexible manner than using the loadSched or
loadStop thresholds.
Administering Platform LSF

Chapter 31
Interactive Jobs with bsub
Interactive Batch Job Messaging
LSF can display messages to stderr or the Windows console when the
following changes occur with interactive batch jobs:

◆ Job state

◆ Pending reason

◆ Suspend reason

Other job status changes, like switching the job’s queue, are not displayed.

Limitations
Interactive batch job messaging is not supported in a MultiCluster environment.

Windows Interactive batch job messaging is not fully supported on Windows. Only
changes in the job state that occur before the job starts running are displayed.
No messages are displayed after the job starts.

Configuring interactive batch job messaging
Messaging for interactive batch jobs can be specified cluster-wide or in the user
environment.

Cluster level To enable interactive batch job messaging for all users in the cluster, the LSF
administrator configures the following parameters in lsf.conf:

◆ LSB_INTERACT_MSG_ENH=Y

◆ (Optional) LSB_INTERACT_MSG_INTVAL

LSB_INTERACT_MSG_INTVAL specifies the time interval, in seconds, in which
LSF updates messages about any changes to the pending status of the job. The
default interval is 60 seconds. LSB_INTERACT_MSG_INTVAL is ignored if
LSB_INTERACT_MSG_ENH is not set.

User level To enable messaging for interactive batch jobs, LSF users can define
LSB_INTERACT_MSG_ENH and LSB_INTERACT_MSG_INTVAL as environment
variables.

The user-level definition of LSB_INTERACT_MSG_ENH overrides the definition
in lsf.conf.
Administering Platform LSF 351

Interactive Batch Job Messaging

352
Example messages

Job in pending
state

The following example shows messages displayed when a job is in pending
state:

% bsub -Is -R "ls < 2" csh
Job <2812> is submitted to default queue <normal>.
<<Waiting for dispatch ...>>

<< Job's resource requirements not satisfied: 2 hosts; >>
<< Load information unavailable: 1 host; >>

<< Just started a job recently: 1 host; >>
<< Load information unavailable: 1 host; >>
<< Job's resource requirements not satisfied: 1 host; >>

Job terminated by
user

The following example shows messages displayed when a job in pending state
is terminated by the user:

% bsub -m hostA -b 13:00 -Is sh
Job <2015> is submitted to default queue <normal>.
Job will be scheduled after Fri Nov 19 13:00:00 1999
<<Waiting for dispatch ...>>

<< New job is waiting for scheduling; >>

<< The job has a specified start time; >>

% bkill 2015
<< Job <2015> has been terminated by user or administrator >>

<<Terminated while pending>>

Job suspended
then resumed

The following example shows messages displayed when a job is dispatched,
suspended, and then resumed:

% bsub -m hostA -Is sh
Job <2020> is submitted to default queue <normal>.
<<Waiting for dispatch ...>>

<< New job is waiting for scheduling; >>
<<Starting on hostA>>
% bstop 2020
<< The job was suspended by user; >>

% bresume 2020
<< Waiting for re-scheduling after being resumed by user; >>
Administering Platform LSF

Chapter 31
Interactive Jobs with bsub
Running X Applications with bsub
You can start an X session on the least loaded host by submitting it as a batch
job:

% bsub xterm

An xterm is started on the least loaded host in the cluster.

When you run X applications using lsrun or bsub, the environment variable
DISPLAY is handled properly for you. It behaves as if you were running the X
application on the local machine.
Administering Platform LSF 353

Writing Job Scripts

354
Writing Job Scripts
You can build a job file one line at a time, or create it from another file, by
running bsub without specifying a job to submit. When you do this, you start
an interactive session in which bsub reads command lines from the standard
input and submits them as a single batch job. You are prompted with bsub>
for each line.

You can use the bsub -Zs command to spool a file.

For more details on bsub options, see the bsub(1) man page.

Writing a job file one line at a time

UNIX example % bsub -q simulation
bsub> cd /work/data/myhomedir
bsub> myjob arg1 arg2
bsub> rm myjob.log
bsub> ^D
Job <1234> submitted to queue <simulation>.

In the above example, the 3 command lines run as a Bourne shell (/bin/sh)
script. Only valid Bourne shell command lines are acceptable in this case.

Windows example C:\> bsub -q simulation
bsub> cd \\server\data\myhomedir
bsub> myjob arg1 arg2
bsub> del myjob.log
bsub> ^Z
Job <1234> submitted to queue <simulation>.

In the above example, the 3 command lines run as a batch file (.BAT). Note
that only valid Windows batch file command lines are acceptable in this case.

Specifying job options in a file
In this example, options to run the job are specified in the options_file.

% bsub -q simulation < options_file
Job <1234> submitted to queue <simulation>.

UNIX On UNIX, the options_file must be a text file that contains Bourne shell
command lines. It cannot be a binary executable file.

Windows On Windows, the options_file must be a text file containing Windows
batch file command lines.
Administering Platform LSF

Chapter 31
Interactive Jobs with bsub
Spooling a job command file
Use bsub -Zs to spool a job command file to the directory specified by the
JOB_SPOOL_DIR parameter in lsb.params, and use the spooled file as the
command file for the job.

Use the bmod -Zsn command to modify or remove the command file after the
job has been submitted. Removing or modifying the original input file does not
affect the submitted job.

Redirecting a script to bsub standard input
You can redirect a script to the standard input of the bsub command:

% bsub < myscript
Job <1234> submitted to queue <test>.

In this example, the myscript file contains job submission options as well as
command lines to execute. When the bsub command reads a script from its
standard input, it can be modified right after bsub returns for the next job
submission.

When the script is specified on the bsub command line, the script is not
spooled:

% bsub myscript
Job <1234> submitted to default queue <normal>.

In this case the command line myscript is spooled, instead of the contents of
the myscript file. Later modifications to the myscript file can affect job
behavior.

Specifying embedded submission options
You can specify job submission options in scripts read from standard input by
the bsub command using lines starting with #BSUB:

% bsub -q simulation
bsub> #BSUB -q test
bsub> #BSUB -o outfile -R "mem>10"
bsub> myjob arg1 arg2
bsub> #BSUB -J simjob
bsub> ^D
Job <1234> submitted to queue <simulation>.

There are a few things to note:

◆ Command-line options override embedded options. In this example, the
job is submitted to the simulation queue rather than the test queue.

◆ Submission options can be specified anywhere in the standard input. In the
above example, the -J option of bsub is specified after the command to
be run.

◆ More than one option can be specified on one line, as shown in the
example above.
Administering Platform LSF 355

Writing Job Scripts

356
Running a job under a particular shell
By default, LSF runs batch jobs using the Bourne (/bin/sh) shell. You can
specify the shell under which a job is to run. This is done by specifying an
interpreter in the first line of the script.

For example:

% bsub
bsub> #!/bin/csh -f
bsub> set coredump=‘ls |grep core‘
bsub> if ("$coredump" != "") then
bsub> mv core core.‘date | cut -d" " -f1‘
bsub> endif
bsub> myjob
bsub> ^D
Job <1234> is submitted to default queue <normal>.

The bsub command must read the job script from standard input to set the
execution shell. If you do not specify a shell in the script, the script is run using
/bin/sh. If the first line of the script starts with a # not immediately followed
by an exclamation mark (!), then /bin/csh is used to run the job.

For example:

% bsub
bsub> # This is a comment line. This tells the system to use /bin/csh
to
bsub> # interpret the script.
bsub>
bsub> setenv DAY ‘date | cut -d" " -f1‘
bsub> myjob
bsub> ^D
Job <1234> is submitted to default queue <normal>.

If running jobs under a particular shell is required frequently, you can specify
an alternate shell using a command-level job starter and run your jobs
interactively. See “Controlling Execution Environment Using Job Starters” on
page 322 for more details.
Administering Platform LSF

Chapter 31
Interactive Jobs with bsub
Registering utmp File Entries for Interactive Batch
Jobs

LSF administrators can configure the cluster to track user and account
information for interactive batch jobs submitted with bsub -Ip or bsub -Is.
User and account information is registered as entries in the UNIX utmp file,
which holds information for commands such as who. Registering user
information for interactive batch jobs in utmp allows more accurate job
accounting.

Configuration and operation
To enable utmp file registration, the LSF administrator sets the LSB_UTMP
parameter in lsf.conf.

When LSB_UTMP is defined, LSF registers the job by adding an entry to the
utmp file on the execution host when the job starts. After the job finishes, LSF
removes the entry for the job from the utmp file.

Limitations
Registration of utmp file entries is only supported on SGI IRIX 6.4 and up.

utmp file registration is not supported in a MultiCluster environment.

Because interactive batch jobs submitted with bsub -I are not associated with
a pseudo-terminal, utmp file registration is not supported for these jobs.
Administering Platform LSF 357

Registering utmp File Entries for Interactive Batch Jobs

358
 Administering Platform LSF

C H A P T E R

32
Running Interactive and Remote

Tasks

This chapter provides instructions for running tasks interactively and remotely
with non-batch utilities such as lsrun, lsgrun, and lslogin.

Contents ◆ “Running Remote Tasks” on page 360

◆ “Interactive Tasks” on page 363

◆ “Load Sharing Interactive Sessions” on page 366
Administering Platform LSF 359

Running Remote Tasks

360
Running Remote Tasks
lsrun is a non-batch utility to run tasks on a remote host. lsgrun is a non-
batch utility to run the same task on many hosts, in sequence one after the
other, or in parallel.

The default for lsrun is to run the job on the host with the least CPU load
(represented by the lowest normalized CPU run queue length) and the most
available memory. Command-line arguments can be used to select other
resource requirements or to specify the execution host.

To avoid typing in the lsrun command every time you want to execute a
remote job, you can also use a shell alias or script to run your job.

For a complete description of lsrun and lsgrun options, see the lsrun(1)
and lsgrun(1) man pages.

In this section ◆ “Running a task on the best available host” on page 360

◆ “Running a task on a host with specific resources” on page 360

◆ “Running a task on a specific host” on page 361

◆ “Running a task by using a pseudo-terminal” on page 361

◆ “Running the same task on many hosts in sequence” on page 361

◆ “Running parallel tasks” on page 362

◆ “Running tasks on hosts specified by a file” on page 362

Running a task on the best available host
To run mytask on the best available host, enter:

% lsrun mytask

LSF automatically selects a host of the same type as the local host, if one is
available. By default the host with the lowest CPU and memory load is
selected.

Running a task on a host with specific resources
If you want to run mytask on a host that meets specific resource requirements,
you can specify the resource requirements using the -R res_req option of
lsrun.

For example:

% lsrun -R 'cserver && swp>100' mytask

In this example mytask must be run on a host that has the resource cserver
and at least 100 MB of virtual memory available.

You can also configure LSF to store the resource requirements of specific tasks.
If you configure LSF with the resource requirements of your task, you do not
need to specify the -R res_req option of lsrun on the command-line. If you
do specify resource requirements on the command line, they override the
configured resource requirements.
Administering Platform LSF

Chapter 32
Running Interactive and Remote Tasks
See the Platform LSF Reference for information about configuring resource
requirements in the lsf.task file.

Resource usage Resource reservation is only available for batch jobs. If you run jobs using only
LSF Base, LIM uses resource usage to determine the placement of jobs.
Resource usage requests are used to temporarily increase the load so that a
host is not overloaded. When LIM makes a placement advice, external load
indices are not considered in the resource usage string. In this case, the syntax
of the resource usage string is

res[=value]:res[=value]: ... :res[=value]

The res is one of the resources whose value is returned by the lsload
command.

rusage[r1m=0.5:mem=20:swp=40]

The above example indicates that the task is expected to increase the 1-minute
run queue length by 0.5, consume 20 MB of memory and 40 MB of swap space.

If no value is specified, the task is assumed to be intensive in using that
resource. In this case no more than one task will be assigned to a host
regardless of how many CPUs it has.

The default resource usage for a task is r15s=1.0:r1m=1.0:r15m=1.0. This
indicates a CPU-intensive task which consumes few other resources.

Running a task on a specific host
If you want to run your task on a particular host, use the lsrun -m option:

% lsrun -m hostD mytask

Running a task by using a pseudo-terminal
Submission of interaction jobs using pseudo-terminal is not supported for
Windows for either lsrun or bsub LSF commands.

Some tasks, such as text editors, require special terminal handling. These tasks
must be run using a pseudo-terminal so that special terminal handling can be
used over the network.

The -P option of lsrun specifies that the job should be run using a pseudo-
terminal:

% lsrun -P vi

Running the same task on many hosts in sequence
The lsgrun command allows you to run the same task on many hosts, one
after the other, or in parallel.

For example, to merge the /tmp/out file on hosts hostA, hostD, and hostB
into a single file named gout, enter:

% lsgrun -m "hostA hostD hostB" cat /tmp/out >> gout
Administering Platform LSF 361

Running Remote Tasks

362
Running parallel tasks

lsgrun -p The -p option tells lsgrun that the task specified should be run in parallel.
See lsgrun(1) for more details.

To remove the /tmp/core file from all 3 hosts, enter:

% lsgrun -m "hostA hostD hostB" -p rm -r /tmp/core

Running tasks on hosts specified by a file

lsgrun -f host_file The lsgrun -f host_file option reads the host_file file to get a list of hosts on
which to run the task.
Administering Platform LSF

Chapter 32
Running Interactive and Remote Tasks
Interactive Tasks
LSF supports transparent execution of tasks on all server hosts in the cluster.
You can run your program on the best available host and interact with it just
as if it were running directly on your workstation. Keyboard signals such as
CTRL-Z and CTRL-C work as expected.

Interactive tasks communicate with the user in real time. Programs like vi use
a text-based terminal interface. Computer Aided Design and desktop
publishing applications usually use a graphic user interface (GUI).

This section outlines issues for running interactive tasks with the non-batch
utilities lsrun, lsgrun, etc. To run interactive tasks with these utilities, use the
-i option.

For more details, see the lsrun(1) and lsgrun(1) man pages.

In this section ◆ “Interactive tasks on remote hosts” on page 363

◆ “Interactive processing and scheduling policies” on page 363

◆ “Shared files and user IDs” on page 364

◆ “Shell mode for remote execution” on page 364

◆ “Run windows” on page 364

◆ “Redirecting streams to files” on page 365

Interactive tasks on remote hosts

Job controls When you run an interactive task on a remote host, you can perform most of
the job controls as if it were running locally. If your shell supports job control,
you can suspend and resume the task and bring the task to background or
foreground as if it were a local task.

For a complete description, see the lsrun(1) man page.

Hiding remote
execution

You can also write one-line shell scripts or csh aliases to hide remote
execution. For example:

#!/bin/sh
Script to remotely execute mytask
exec lsrun -m hostD mytask

OR

% alias mytask "lsrun -m hostD mytask"

Interactive processing and scheduling policies
LSF lets you run interactive tasks on any computer on the network, using your
own terminal or workstation. Interactive tasks run immediately and normally
require some input through a text-based or graphical user interface. All the
input and output is transparently sent between the local host and the job
execution host.
Administering Platform LSF 363

Interactive Tasks

364
Shared files and user IDs
When LSF runs a task on a remote host, the task uses standard UNIX system
calls to access files and devices. The user must have an account on the remote
host. All operations on the remote host are done with the user’s access
permissions.

Tasks that read and write files access the files on the remote host. For load
sharing to be transparent, your files should be available on all hosts in the
cluster using a file sharing mechanism such as NFS or AFS. When your files are
available on all hosts in the cluster, you can run your tasks on any host without
worrying about how your task will access files.

LSF can operate correctly in cases where these conditions are not met, but the
results may not be what you expect. For example, the /tmp directory is usually
private on each host. If you copy a file into /tmp on a remote host, you can
only read that file on the same remote host.

LSF can also be used when files are not available on all hosts. LSF provides the
lsrcp command to copy files across LSF hosts. You can use pipes to redirect
the standard input and output of remote commands, or write scripts to copy
the data files to the execution host.

Shell mode for remote execution
On UNIX, shell mode support is provided for running interactive applications
through RES.

Not supported for Windows.

Shell mode support is required for running interactive shells or applications
that redefine the CTRL-C and CTRL-Z keys (for example, jove).

The -S option of lsrun, ch or lsgrun creates the remote task with shell mode
support. The default is not to enable shell mode support.

Run windows
Some run windows are only applicable to batch jobs. Interactive jobs
scheduled by LIM are controlled by another set of run windows.
Administering Platform LSF

Chapter 32
Running Interactive and Remote Tasks
Redirecting streams to files
By default, both standard error messages and standard output messages of
interactive tasks are written to stdout on the submission host.

To separate stdout and stderr and redirect to separate files, set
LSF_INTERACTIVE_STDERR=y in lsf.conf or as an environment variable.

For example, to redirect both stdout and stderr to different files with the
parameter set:

% lsrun mytask 2>mystderr 1>mystdout

The result of the above example is for stderr to be redirected to mystderr,
and stdout to mystdout. Without LSF_INTERACTIVE_STDERR set, both
stderr and stdout will be redirected to mystdout.

See the Platform LSF Reference for more details on
LSF_INTERACTIVE_STDERR.
Administering Platform LSF 365

Load Sharing Interactive Sessions

366
Load Sharing Interactive Sessions
There are different ways to use LSF to start an interactive session on the best
available host.

Logging on to the least loaded host
To log on to the least loaded host, use the lslogin command.

When you use lslogin, LSF automatically chooses the best host and does an
rlogin to that host.

With no argument, lslogin picks a host that is lightly loaded in CPU, has few
login sessions, and whose binary is compatible with the current host.

Logging on to a host with specific resources
If you want to log on a host that meets specific resource requirements, use the
lslogin -R res_req option.

% lslogin -R "solaris order[ls:cpu]"

This command opens a remote login to a host that has the sunos resource, few
other users logged in, and a low CPU load level. This is equivalent to using
lsplace to find the best host and then using rlogin to log in to that host:

% rlogin 'lsplace -R "sunos order[ls:cpu]"'
Administering Platform LSF

Chapter 32
Running Interactive and Remote Tasks
Load Sharing X Applications

Starting an xterm
If you are using the X Window System, you can start an xterm that opens a
shell session on the least loaded host by entering:

% lsrun sh -c xterm &

The & in this command line is important as it frees resources on the host once
xterm is running, by running the X terminal in the background.

In this example, no processes are left running on the local host. The lsrun
command exits as soon as xterm starts, and the xterm on the remote host
connects directly to the X server on the local host.

xterm on a PC
Each X application makes a separate network connection to the X display on
the user's desktop. The application generally gets the information about the
display from the DISPLAY environment variable.

X-based systems such as eXceed start applications by making a remote shell
connection to the UNIX server, setting the DISPLAY environment variable, and
then invoking the X application. Once the application starts, it makes its own
connection to the display and the initial remote shell is no longer needed.

This approach can be extended to allow load sharing of remote applications.
The client software running on the X display host makes a remote shell
connection to any server host in the LSF cluster. Instead of running the X
application directly, the client invokes a script that uses LSF to select the best
available host and starts the application on that host. Because the application
then makes a direct connection to the display, all of the intermediate
connections can be closed. The client software on the display host must select
a host in the cluster to start the connection. You can choose an arbitrary host
for this; once LSF selects the best host and starts the X application there, the
initial host is no longer involved. There is no ongoing load on the initial host.

Setting up an X terminal to start an X session on the least loaded host
If you are using a PC as a desktop machine and are running an X Window
server on your PC, then you can start an X session on the least loaded host.

The following steps assume you are using Exceed from Hummingbird
Communications. This procedure can be used to load share any X-based
application.

You can customize host selection by changing the resource requirements
specified with -R "...". For example, a user could have several icons in the
xterm program group: one called Best, another called Best_Sun, another
Best_SGI.
Administering Platform LSF 367

Load Sharing X Applications

368
Setting up Exceed to log on the least loaded host
To set up Exceed to log on to the least loaded host:

1 Click the Xstart icon in the Exceed program group.

2 Choose REXEC (TCP/IP, ...) as start method, program type is X window.

3 Set the host to be any server host in your LSF cluster:
lsrun -R "type==any order[cpu:mem:login]" lsbg xterm -sb -ls -
display your_PC:0.0

4 Set description to be Best.

5 Click the Install button in the Xstart window.

This installs Best as an icon in the program group you chose (for example,
xterm).

The user can now log on to the best host by clicking Best in the Xterm
program group.

Starting an xterm in Exceed
To start an xterm:

◆ Double-click the Best icon.

You will get an xterm started on the least loaded host in the cluster and
displayed on your screen.

Examples

Running any application on the least loaded host
To run appY on the best machine licensed for it, you could set the command
line in Exceed to be the following and set the description to appY:

lsrun -R "type==any && appY order[mem:cpu]" sh -c "appY -display your_PC:0.0 &"

You must make sure that all the UNIX servers licensed for appY are configured
with the resource "appY". In this example, appY requires a lot of memory when
there are embedded graphics, so we make "mem" the most important
consideration in selecting the best host among the eligible servers.

Starting an X session on the least loaded host in any X desktop environment
The above approach also applies to other X desktop environments. In general,
if you want to start an X session on the best host, run the following on an LSF
host:

lsrun -R "resource_requirement" lsbg my_Xapp -display your_PC:0.0

where

resource_requirement is your resource requirement string
Administering Platform LSF

Chapter 32
Running Interactive and Remote Tasks
Script for automatically specifying resource requirements
The above examples require the specification of resource requirement strings
by users. You may want to centralize this such that all users use the same
resource specifications.

You can create a central script (for example lslaunch) and place it in the
/lsf/bin directory. For example:

#!/bin/sh
lsrun -R "order[cpu:mem:login]" lsbg $@
exit $?

Which would simplify the command string to:

lslaunch xterm -sb -ls -display your_PC:0.0

Taking this one step further, you could have lsxterm:

#!/bin/sh
lsrun -R "order[cpu:mem:login]" lsbg xterm -sb -sl $@
exit $?

Which would simplify the command string to:

lsxterm -display your_PC:0.0
Administering Platform LSF 369

Load Sharing X Applications

370
 Administering Platform LSF

P A R T

VII
Running Parallel Jobs

Contents ◆ Chapter 33, “Running Parallel Jobs”

◆ Chapter 34, “Advance Reservation”

C H A P T E R

33
Running Parallel Jobs

Contents ◆ “How LSF Runs Parallel Jobs” on page 374

◆ “Preparing Your Environment to Submit Parallel Jobs to LSF” on page 375

◆ “Submitting Parallel Jobs” on page 376

◆ “Starting Parallel Tasks with LSF Utilities” on page 380

◆ “Job Slot Limits For Parallel Jobs” on page 381

◆ “Specifying a Minimum and Maximum Number of Processors” on page 382

◆ “Specifying a Mandatory First Execution Host” on page 383

◆ “Controlling Processor Allocation Across Hosts” on page 385

◆ “Running Parallel Processes on Homogeneous Hosts” on page 387

◆ “Using LSF Make to Run Parallel Jobs” on page 389

◆ “Limiting the Number of Processors Allocated” on page 390

◆ “Reserving Processors” on page 393

◆ “Reserving Memory for Pending Parallel Jobs” on page 395

◆ “Allowing Jobs to Use Reserved Job Slots” on page 396

◆ “Parallel Fairshare” on page 401

◆ “How Deadline Constraint Scheduling Works For Parallel Jobs” on
page 402
Administering Platform LSF 373

How LSF Runs Parallel Jobs

374
How LSF Runs Parallel Jobs
When LSF runs a job, the LSB_HOSTS variable is set to the names of the hosts
running the batch job. For a parallel batch job, LSB_HOSTS contains the
complete list of hosts that LSF has allocated to that job.

LSF starts one controlling process for the parallel batch job on the first host in
the host list. It is up to your parallel application to read the LSB_HOSTS
environment variable to get the list of hosts, and start the parallel job
components on all the other allocated hosts.

LSF provides a generic interface to parallel programming packages so that any
parallel package can be supported by writing shell scripts or wrapper
programs.

For information about writing parallel applications for use with the LSF Parallel
product, see Using Platform LSF Parallel.
Administering Platform LSF

Chapter 33
Running Parallel Jobs
Preparing Your Environment to Submit Parallel Jobs to
LSF

Getting the host list
Some applications can take this list of hosts directly as a command line
parameter. For other applications, you may need to process the host list.

Example The following example shows a /bin/sh script that processes all the hosts in
the host list, including identifying the host where the job script is executing.

#!/bin/sh
Process the list of host names in LSB_HOSTS

for host in $LSB_HOSTS ; do
handle_host $host
done

Parallel job scripts
Each parallel programming package has different requirements for specifying
and communicating with all the hosts used by a parallel job. LSF is not tailored
to work with a specific parallel programming package. Instead, LSF provides a
generic interface so that any parallel package can be supported by writing shell
scripts or wrapper programs.

LSF includes example shell scripts for running PVM (pvmjob), P4 (p4job), and
MPI (mpijob) programs as parallel batch jobs. These scripts are installed in the
LSF_BINDIR directory as defined in the lsf.conf file.

You can modify these scripts to support more parallel packages.

For more information, see:

◆ “Submitting Parallel Jobs” on page 376

Using a job starter
You can configure the script into your queue as a job starter, and then all users
can submit parallel jobs without having to type the script name. See “Queue-
Level Job Starters” on page 320 for more information about job starters.

To see if your queue already has a job starter defined, run bqueues -l.
Administering Platform LSF 375

Submitting Parallel Jobs

376
Submitting Parallel Jobs
LSF can allocate more than one host or processor to run a job and automatically
keeps track of the job status, while a parallel job is running.

◆ “Specifying the number of processors” on page 376

◆ “Submitting PVM Jobs to LSF” on page 377

◆ “Submitting PVM Jobs to LSF” on page 377

◆ “Submitting MPI Jobs” on page 378

Specifying the number of processors
When submitting a parallel job that requires multiple processors, you can
specify the exact number of processors to use.

To submit a parallel job, use bsub -n and specify multiple processors.

Example % bsub -n 4 myjob

This command submits myjob as a parallel job. The job is started when 4 job
slots are available.
Administering Platform LSF

Chapter 33
Running Parallel Jobs
Submitting PVM Jobs to LSF
Parallel Virtual Machine (PVM) is a parallel programming system distributed by
Oak Ridge National Laboratory. PVM programs are controlled by the PVM hosts
file, which contains host names and other information.

pvmjob script
The pvmjob shell script supplied with LSF can be used to run PVM programs
as parallel LSF jobs. The pvmjob script reads the LSF environment variables,
sets up the PVM hosts file and then runs the PVM job. If your PVM job needs
special options in the hosts file, you can modify the pvmjob script.

Example
For example, if the command line to run your PVM job is:

% myjob data1 -o out1

the following command submits this job to LSF to run on 10 hosts:

% bsub -n 10 pvmjob myjob data1 -o out1

Other parallel programming packages can be supported in the same way. The
p4job shell script runs jobs that use the P4 parallel programming library. Other
packages can be handled by creating similar scripts.
Administering Platform LSF 377

Submitting MPI Jobs

378
Submitting MPI Jobs
The Message Passing Interface (MPI) is a portable library that supports parallel
programming. LSF supports MPICH, a joint implementation of MPI by Argonne
National Laboratory and Mississippi State University. This version supports
both TCP/IP and IBM’s Message Passing Library (MPL) communication
protocols.

mpijob script
LSF provides an mpijob shell script that you can use to submit MPI jobs to LSF.
The mpijob script writes the hosts allocated to the job by LSF to a file and
supplies the file as an option to MPICH’s mpirun command.

mpijob syntax
mpijob -tcp mpirun program arguments

Write the LSF hosts to a PROCGROUP file, supply the -p4pg procgroup_file
option to the mpirun command, and use the TCP/IP protocol. This is the
default.

mpijob -mpl mpirun program arguments

Write the LSF hosts to a MACHINE file, supply the
-machinefile machine_file option to the mpirun command, and use the
MPL on an SP-2 system.

◆ program—The parallel executable to be run

◆ arguments—Any arguments required by the parallel executable

Example To submit a job requesting four hosts and using the default TCP/IP protocol,
use:

% bsub -n 4 mpijob mpirun myjob

Submitting jobs to a pool of IBM SP-2 nodes
Before you can submit a job to a particular pool of IBM SP-2 nodes, an LSF
administrator must install the SP-2 ELIM. The SP-2 ELIM provides the pool
number and lock status of each node.

To submit the same job to run on four nodes in pool 1 on an IBM SP-2 system
using MPL, use:

% bsub -n 4 -R "pool == 1" mpijob -mpl mpirun myjob

To submit the same job to run on four nodes in pool 1 that are not locked
(dedicated to using the High Performance Switch) on an SP-2 system using
MPL, use:

% bsub -n 4 -q mpiq -R "pool == 1 && lock == 0" mpijob -mpl mpirun myjob
Administering Platform LSF

Chapter 33
Running Parallel Jobs
Submitting jobs using the IBM SP-2 High Performance switch
Before you can submit a job using the IBM SP-2 High Performance Switch in
dedicated mode, an LSF administrator must set up a queue for automatic
requeue on job failure. The job queue will automatically requeue a job that
failed because an SP-2 node was locked after LSF selected the node but before
the job was dispatched.

Note that exclusive job requeue does not work for parallel jobs.
Administering Platform LSF 379

Starting Parallel Tasks with LSF Utilities

380
Starting Parallel Tasks with LSF Utilities
For simple parallel jobs you can use LSF utilities to start parts of the job on
other hosts. Because LSF utilities handle signals transparently, LSF can suspend
and resume all components of your job without additional programming.

The simplest parallel job runs an identical copy of the executable on every
host. The lsgrun command takes a list of host names and runs the specified
task on each host. The lsgrun -p command specifies that the task should be
run in parallel on each host.

Example This example submits a job that uses lsgrun to run myjob on all the selected
hosts in parallel:

% bsub -n 10 ’lsgrun -p -m "$LSB_HOSTS" myjob’
Job <3856> is submitted to default queue <normal>.

For more complicated jobs, you can write a shell script that runs lsrun in the
background to start each component.
Administering Platform LSF

Chapter 33
Running Parallel Jobs
Job Slot Limits For Parallel Jobs
A job slot is the basic unit of processor allocation in LSF. A sequential job uses
one job slot. A parallel job that has N components (tasks) uses N job slots, which
can span multiple hosts.

By default, running and suspended jobs count against the job slot limits for
queues, users, hosts, and processors that they are associated with.

With processor reservation, job slots reserved by pending jobs also count
against all job slot limits.

When backfilling occurs, the job slots used by backfill jobs count against the
job slot limits for the queues and users, but not hosts or processors. This means
when a pending job and a running job occupy the same physical job slot on a
host, both jobs count towards the queue limit, but only the pending job counts
towards host limit.
Administering Platform LSF 381

Specifying a Minimum and Maximum Number of Processors

382
Specifying a Minimum and Maximum Number of
Processors

When submitting a parallel job, you can also specify a minimum number and
a maximum number of processors.

If you specify a maximum and minimum number of processors, the job will
start as soon as the minimum number of processors is available, but it will use
up to the maximum number of processors, depending on how many
processors are available at the time. Once the job starts running, no more
processors will be allocated to it even though more may be available later on.

Jobs that request fewer processors than the minimum PROCLIMIT defined for
the queue to which the job is submitted, or more processors than the maximum
PROCLIMIT cannot use the queue and are rejected. If the job requests
minimum and maximum processors, the maximum requested cannot be less
than the minimum PROCLIMIT, and the minimum requested cannot be more
than the maximum PROCLIMIT.

Syntax
bsub -n min_proc[,max_proc]

Example
% bsub -n 4,16 myjob

At most, 16 processors can be allocated to this job. If there are less than 16
processors eligible to run the job, this job can still be started as long as the
number of eligible processors is greater than or equal to 4.
Administering Platform LSF

Chapter 33
Running Parallel Jobs
Specifying a Mandatory First Execution Host
In general, the first execution host satisfies certain resource requirements that
might not be present on other available hosts.

LSF normally selects the first execution host dynamically according to the
resource availability and host load for a parallel job. You can also specify a
mandatory first execution host.

Specify a mandatory first execution host
Use an exclamation point (!) to indicate mandatory first execution host. You
can specify first execution host at job submission, or in the queue definition.

Job level Use the -m option of bsub:

% bsub -n 32 -m "hostA! hostB hostC" myjob

hostA is the mandatory first execution host.

Queue level Specify the first execution host in the list of hosts in the HOSTS parameter in
lsb.queues:

HOSTS = hostA! hostB hostC

The queue-level specification of mandatory first execution host applies to all
jobs submitted to the queue.

Rules The following rules apply when specifying first execution host:

◆ First execution host cannot be a host group or host partition, even if only
one host is in the group or partition. Jobs that specify a host group or host
partition as first execution host are rejected.

◆ The first execution host must satisfy the corresponding resource
requirement specified at submission or on the queue. The order string in
the resource requirement is ignored: the select, span and rusage strings in
a resource requirement apply to the first execution host but the order string
does not.

If the specified first execution host does not satisfy the resource
requirement, the job will stay in the pending state until the resource
requirement is satisfied.

◆ The first execution host can appear anywhere in the host string, but you
can specify only one first execution host.

If multiple first execution hosts are specified in HOSTS on a queue, only
the first valid first execution host is used, the others will be ignored as if
they were not specified.

◆ The keyword all is ignored if it is specified in the execution host list. The
keyword others is valid in the host list, but it cannot be the first execution
host. Both keywords are ignored if they are specified as the first execution
host.
Administering Platform LSF 383

Specifying a Mandatory First Execution Host

384
If the first execution host is incorrect at job submission, the job will be rejected.
If incorrect configurations exist on the queue level, warning messages will be
logged and displayed when LSF starts, restarts or is reconfigured.

Job chunking Specifying a mandatory first execution host affects job chunking. For example,
the following jobs have different job requirements, and will not be placed in
the same job chunk:

% bsub -m "hostA! hostB hostC" myjob

% bsub -m "hostA hostB hostC" myjob
Administering Platform LSF

Chapter 33
Running Parallel Jobs
Controlling Processor Allocation Across Hosts
Sometimes you need to control how the selected processors for a parallel job
are distributed across the hosts in the cluster.

You can control this at the job level or at the queue level. The queue
specification is ignored if your job specifies its own locality.

Specifying parallel job locality at the job level
By default, LSF will allocate the required processors for the job from the
available set of processors.

A parallel job may span multiple hosts, with a specifiable number of processes
allocated to each host. Thus, a job may be scheduled on to a single
multiprocessor host to take advantage of its efficient shared memory, or spread
out on to multiple hosts to take advantage of their aggregate memory and swap
space. Flexible spanning may also be used to achieve parallel I/O.

You are able to specify "select all the processors for this parallel batch job on
the same host", or "do not chose more than n processors on one host" by using
the span section in the resource requirement string (bsub -R).

Only the following two cases are supported:

span[hosts=1]

This indicates that all the processors allocated to this job must be on the same
host.

span[ptile=n]

This indicates the maximum number of processors on each host that should be
allocated to the job, regardless of how many processors the host possesses.

Examples % bsub -n 4 -R "span[hosts=1]" myjob

Runs the job on a host that has at least 4 processors currently eligible to run
the 4 components of this job.

% bsub -n 4 -R "span[ptile=2]" myjob

Runs the job on 2 hosts, using 2 processors on each host. Each host may have
more than 2 processors available.

% bsub -n 4 -R "span[ptile=3]" myjob

Runs the job on 2 hosts, using 3 processors on the first host and 1 processor
on the second host.

% bsub -n 4 -R "span[ptile=1]" myjob

Runs the job on 4 hosts, even though some of the 4 hosts may have more than
one processor currently available.
Administering Platform LSF 385

Controlling Processor Allocation Across Hosts

386
Specifying parallel job locality at the queue level
The queue may also define the locality for parallel jobs using the RES_REQ
parameter.
Administering Platform LSF

Chapter 33
Running Parallel Jobs
Running Parallel Processes on Homogeneous Hosts
Parallel jobs run on multiple hosts. If your cluster has heterogeneous hosts
some processes from a parallel job may for example, run on Solaris and some
on SGI IRIX. However, for performance reasons you may want all processes of
a job to run on the same type of host instead of having some processes run on
one type of host and others on another type of host.

You can use the same section in the resource requirement string to indicate to
LSF that processes are to run on one type or model of host. You can also use
a custom resource to define the criteria for homogeneous hosts.

Examples

Running all parallel processes on the same host type
% bsub -n 4 -R"select[type==SGI6 || type==SOL7] same[type]" myjob

Allocate 4 processors on the same host type—either SGI IRIX, or Solaris 7, but
not both.

Running all parallel processes on the same host type and model
% bsub -n 6 -R"select[type==any] same[type:model]" myjob

Allocate 6 processors on any host type or model as long as all the processors
are on the same host type and model.

Running all parallel processes on hosts in the same high-speed connection group
% bsub -n 12 -R "select[type==any && (hgconnect==hg1 || hgconnect==hg2 ||
hgconnect==hg3)] same[hgconnect:type]" myjob

For performance reasons, you want to have LSF allocate 12 processors on hosts
in high-speed connection group hg1, hg2, or hg3, but not across hosts in hg1,
hg2 or hg3 at the same time. You also want hosts that are chosen to be of the
same host type.

This example reflects a network in which network connections among hosts
in the same group are high-speed, and network connections between host
groups are low-speed.

In order to specify this, you create a custom resource hgconnect in
lsf.shared.

Begin Resource
RESOURCENAME TYPE INTERVAL INCREASING RELEASE DESCRIPTION
hgconnect STRING () () () (OS release)
…
End Resource
Administering Platform LSF 387

Running Parallel Processes on Homogeneous Hosts

388
In the lsf.cluster.cluster_name file, identify groups of hosts that share
high-speed connections.

Begin ResourceMap
RESOURCENAME LOCATION
hgconnect (hg1@[hostA hostB] hg2@[hostD hostE] hg3@[hostF hostG hostX])
End ResourceMap

If you want to specify the same resource requirement at the queue-level, define
a custom resource in lsf.shared as in the previous example, map hosts to
high-speed connection groups in lsf.cluster.cluster_name, and define
the following queue in lsb.queues:

Begin Queue
QUEUE_NAME = My_test
PRIORITY = 30
NICE = 20
RES_REQ = "select[mem > 1000 && type==any && (hgconnect==hg1 ||
hgconnect==hg2 || hgconnect=hg3)]same[hgconnect:type]"
DESCRIPTION = either hg1 or hg2 or hg3
End Queue

This example allocates processors on hosts that:

◆ Have more than 1000 MB in memory

◆ Are of the same host type

◆ Are in high-speed connection group hg1 or hg2 or hg3
Administering Platform LSF

Chapter 33
Running Parallel Jobs
Using LSF Make to Run Parallel Jobs
For parallel jobs that have a variety of different components to run, you can
use LSF Make. Create a makefile that lists all the components of your batch job
and then submit the LSF Make command to LSF.

Example
The following example shows a bsub command and makefile for a simple
parallel job.

% bsub -n 4 lsmake -f Parjob.makefile
Job <3858> is submitted to default queue <normal>.

Parjob.makefile # Makefile to run example parallel job using lsbatch and LSF Make

all: part1 part2 part3 part4

part1 part2 part3: myjob data.$@

part4: myjob2 data.part1 data.part2 data.part3

The batch job has four components. The first three components run the myjob
command on the data.part1, data.part2 and data.part3 files. The fourth
component runs the myjob2 command on all three data files. There are no
dependencies between the components, so LSF Make runs them in parallel.
Administering Platform LSF 389

Limiting the Number of Processors Allocated

390
Limiting the Number of Processors Allocated
Use the PROCLIMIT parameter in lsb.queues to limit the number of
processors that can be allocated to a parallel job in the queue.

◆ “Syntax” on page 390

◆ “How PROCLIMIT affects submission of parallel jobs” on page 390

◆ “Changing PROCLIMIT” on page 391

◆ “MultiCluster” on page 391

◆ “Automatic queue selection” on page 391

◆ “Examples” on page 392

Syntax
PROCLIMIT = [minimum_limit [default_limit]] maximum_limit

All limits must be positive numbers greater than or equal to 1 that satisfy the
following relationship:

1 <= minimum <= default <= maximum

You can specify up to three limits in the PROCLIMIT parameter:

How PROCLIMIT affects submission of parallel jobs
The -n option of bsub specifies the number of processors to be used by a
parallel job, subject to the processor limits of the queue.

Jobs that specify fewer processors than the minimum PROCLIMIT or more
processors than the maximum PROCLIMIT cannot use this queue and are
rejected.

If a default value for PROCLIMIT is specified in the queue, jobs submitted
without specifying -n use the default number of processors. If the queue has
only minimum and maximum values for PROCLIMIT, the number of processors
is equal to the minimum value. If only a maximum value for PROCLIMIT is
specified, or the queue has no PROCLIMIT, the number of processors is equal
to 1.

Incorrect processor limits are ignored, and a warning message is displayed
when LSF is reconfigured or restarted. A warning message is also logged to the
MBD log file when LSF is started.

If You Specify ... Then ...

One limit It is the maximum processor limit. The minimum and default
limits are set to 1.

Two limits The first is the minimum processor limit, and the second one is
the maximum. The default is set equal to the minimum.
The minimum must be less than or equal to the maximum.

Three limits The first is the minimum processor limit, the second is the default
processor limit, and the third is the maximum.
The minimum must be less than the default and the maximum.
Administering Platform LSF

Chapter 33
Running Parallel Jobs
Changing PROCLIMIT
If you change the PROCLIMIT parameter, the new processor limit does not
affect running jobs. Pending jobs with no processor requirements use the new
default PROCLIMIT value. If the pending job does not satisfy the new
processor limits for the queue, it remains in PEND state, and the pending
reason changes to the following:

Job no longer satisfies queue PROCLIMIT configuration

If PROCLIMIT specification is incorrect (for example, too many parameters), a
reconfiguration error message is issued. Reconfiguration proceeds and the
incorrect PROCLIMIT is ignored.

MultiCluster
Jobs forwarded to a remote cluster are subject to the processor limits of the
remote queues. Any processor limits specified on the local cluster are not
applied to the remote job.

Automatic queue selection
When you submit a parallel job without specifying a queue name, LSF
automatically selects the most suitable queue from the queues listed in the
DEFAULT_QUEUE parameter in lsb.params or the LSB_DEFAULTQUEUE
environment variable. Automatic queue selection takes into account any
maximum and minimum PROCLIMIT values for the queues available for
automatic selection.

If you specify -n min_proc,max_proc, but do not specify a queue, the first
queue that satisfies the processor requirements of the job is used. If no queue
satisfies the processor requirements, the job is rejected.

Example For example, queues with the following PROCLIMIT values are defined in
lsb.queues:

◆ queueA with PROCLIMIT=1 1 1

◆ queueB with PROCLIMIT=2 2 2

◆ queueC with PROCLIMIT=4 4 4

◆ queueD with PROCLIMIT=8 8 8

◆ queueE with PROCLIMIT=16 16 16

In lsb.params: DEFAULT_QUEUE=queueA queueB queueC queueD queueE

For the following jobs:

% bsub -n 8 myjob

LSF automatically selects queueD to run myjob.

% bsub -n 5 myjob

Job myjob fails because no default queue has the correct number of
processors.
Administering Platform LSF 391

Limiting the Number of Processors Allocated

392
Examples

Maximum
processor limit

PROCLIMIT is specified in the default queue in lsb.queues as:

PROCLIMIT = 3

The maximum number of processors that can be allocated for this queue is 3.

Minimum and
maximum

processor limits

PROCLIMIT is specified in lsb.queues as:

PROCLIMIT = 3 8

The minimum number of processors that can be allocated for this queue is 3
and the maximum number of processors that can be allocated for this queue
is 8.

Minimum, default,
and maximum

processor limits

PROCLIMIT is specified in lsb.queues as:

PROCLIMIT = 4 6 9

◆ Minimum number of processors that can be allocated for this queue is 4

◆ Default number of processors for the queue is 6

◆ Maximum number of processors that can be allocated for this queue is 9

Example Description

% bsub -n 2 myjob The job myjob runs on 2 processors.
% bsub -n 4 myjob The job myjob is rejected from the queue because it requires more

than the maximum number of processors configured for the queue (3).
% bsub -n 2,3 myjob The job myjob runs on 2 or 3 processors.
% bsub -n 2,5 myjob The job myjob runs on 2 or 3 processors, depending on how many

slots are currently available on the host.
% bsub myjob No default or minimum is configured, so the job myjob runs on 1

processor.

Example Description

% bsub -n 5 myjob The job myjob runs on 5 processors.
% bsub -n 2 myjob The job myjob is rejected from the queue because the number of

processors requested is less than the minimum number of processors
configured for the queue (3).

% bsub -n 4,5 myjob The job myjob runs on 4 or 5 processors.
% bsub -n 2,6 myjob The job myjob runs on 3 to 6 processors.
% bsub -n 4,9 myjob The job myjob runs on 4 to 8 processors.
% bsub myjob The default number of processors is equal to the minimum number (3).

The job myjob runs on 3 processors.

Example Description

% bsub myjob Because a default number of processors is configured, the job myjob
runs on 6 processors.
Administering Platform LSF

Chapter 33
Running Parallel Jobs
Reserving Processors

About processor reservation
When parallel jobs have to compete with sequential jobs for resources, job
slots that become available are likely to be taken immediately by a sequential
job. Parallel jobs need multiple job slots to be available before they can be
dispatched. If the cluster is always busy, a large parallel job could be pending
indefinitely. The more processors a parallel job requires, the worse the
problem is.

Processor reservation solves this problem by reserving job slots as they become
available, until there are enough reserved job slots to run the parallel job.

You might want to configure processor reservation if your cluster has a lot of
sequential jobs that compete for resources with parallel jobs.

How processor reservation works
If processor reservation is enabled, and a parallel job cannot be dispatched
because there are not enough job slots to satisfy its minimum processor
requirements, the job slots that are currently available will be reserved and
accumulated.

By default, a reserved job slot is unavailable to any other job. To avoid
deadlock situations, in which the system is reserving job slots for multiple
parallel jobs and none of them can acquire sufficient resources to start, a
parallel job will give up all its reserved job slots if it has not accumulated
enough to start within a specified number of dispatch turns.

Configuring processor reservation
Processor reservation is disabled by default.

To enable it, set SLOT_RESERVE in lsb.queues and specify a time period in
seconds over which a job can reserve job slots. After the specified amount of
time, if a job has not accumulated enough job slots to start, it releases all its
reserved job slots.

Syntax SLOT_RESERVE=MAX_RESERVE_TIME[n].

where n is an integer by which to multiply MBD_SLEEP_TIME. This means a
job cannot reserve job slots for more than (n * MBD_SLEEP_TIME) seconds.
MBD_SLEEP_TIME is defined in lsb.params; the default value is 60 seconds.
Administering Platform LSF 393

Reserving Processors

394
Example Begin Queue
.
PJOB_LIMIT=1
SLOT_RESERVE = MAX_RESERVE_TIME[5]
.
End Queue

In this example, if MBD_SLEEP_TIME is 30 seconds, a job can reserve job slots
for 5 *30= 150 seconds, or 2.5 minutes.

Viewing information about reserved job slots
Reserved slots can be displayed with the bjobs command. The number of
reserved slots can be displayed with the bqueues, bhosts, bhpart, and
busers commands. Look in the RSV column.
Administering Platform LSF

Chapter 33
Running Parallel Jobs
Reserving Memory for Pending Parallel Jobs
By default, the rusage string reserves resources for running jobs. Because
resources are not reserved for pending jobs, some memory-intensive jobs
could be pending indefinitely because smaller jobs take the resources
immediately before the larger jobs can start running. The more memory a job
requires, the worse the problem is.

Memory reservation for pending jobs solves this problem by reserving memory
as it becomes available, until the total required memory specified on the
rusage string is accumulated and the job can start. Use memory reservation
for pending jobs if memory-intensive jobs often compete for memory with
smaller jobs in your cluster.

Unlike slot reservation, which only applies to parallel jobs, memory reservation
applies to both sequential and parallel jobs.

Configuring memory reservation for pending parallel jobs
Use the RESOURCE_RESERVE parameter in lsb.queues to reserve host
memory for pending jobs, as described in “Memory Reservation for Pending
Jobs” on page 216.

lsb.queues Set the RESOURCE_RESERVE parameter in a queue defined in lsb.queues.

The RESOURCE_RESERVE parameter overrides the SLOT_RESERVE parameter.
If both RESOURCE_RESERVE and SLOT_RESERVE are defined in the same
queue, job slot reservation and memory reservation are enabled and an error
is displayed when the cluster is reconfigured. SLOT_RESERVE is ignored.
Backfill on memory may still take place.

The following queue enables both memory reservation and backfill in the same
queue:

Begin Queue
QUEUE_NAME = reservation_backfill
DESCRIPTION = For resource reservation and backfill
PRIORITY = 40
RESOURCE_RESERVE = MAX_RESERVE_TIME[20]
BACKFILL = Y
End Queue

Enabling per-slot memory reservation
By default, memory is reserved for parallel jobs on a per-host basis. For
example, by default, the command:

% bsub -n 4 -R "rusage[mem=500]" -q reservation myjob

requires the job to reserve 500 MB on each host where the job runs.

To enable per-slot memory reservation, define
RESOURCE_RESERVE_PER_SLOT=y in lsb.params. In this example, if per-
slot reservation is enabled, the job must reserve 500 MB of memory for each
job slot (4 * 500 = 2 GB) on the host in order to run.
Administering Platform LSF 395

Allowing Jobs to Use Reserved Job Slots

396
Allowing Jobs to Use Reserved Job Slots

About backfill scheduling
By default, a reserved job slot cannot be used by another job. To make better
use of resources and improve performance of LSF, you can configure backfill
scheduling. Backfill scheduling allows other jobs to use the reserved job slots,
as long as the other jobs will not delay the start of another job. Backfilling,
together with processor reservation, allows large parallel jobs to run while not
underutilizing resources.

In a busy cluster, processor reservation helps to schedule large parallel jobs
sooner. However, by default, reserved processors remain idle until the large
job starts. This degrades the performance of LSF because the reserved
resources are idle while jobs are waiting in the queue.

Backfill scheduling allows the reserved job slots to be used by small jobs that
can run and finish before the large job starts. This improves the performance
of LSF because it increases the utilization of resources.

How backfilling works
For backfill scheduling, LSF assumes that a job will run until its run limit
expires. Backfill scheduling works most efficiently when all the jobs in the
cluster have a run limit.

Since jobs with a shorter run limit have more chance of being scheduled as
backfill jobs, users who specify appropriate run limits in a backfill queue will
be rewarded by improved turnaround time.

Once the big parallel job has reserved sufficient job slots, LSF calculates the
start time of the big job, based on the run limits of the jobs currently running
in the reserved slots. LSF cannot backfill if the big job is waiting for a job that
has no run limit defined.

If LSF can backfill the idle job slots, only jobs with run limits that expire before
the start time of the big job will be allowed to use the reserved job slots. LSF
cannot backfill with a job that has no run limit.
Administering Platform LSF

Chapter 33
Running Parallel Jobs
Example

In this scenario, assume the cluster consists of a 4-CPU multiprocessor host.

1 A sequential job (job1) with a run limit of 2 hours is submitted and gets
started at 8:00 am (figure a).

2 Shortly afterwards, a parallel job (job2) requiring all 4 CPUs is submitted.
It cannot start right away because job1 is using one CPU, so it reserves the
remaining 3 processors (figure b).

3 At 8:30 am, another parallel job (job3) is submitted requiring only two
processors and with a run limit of 1 hour. Since job2 cannot start until
10:00am (when job1 finishes), its reserved processors can be backfilled by
job3 (figure c). Therefore job3 can complete before job2's start time,
making use of the idle processors.

4 Job3 will finish at 9:30am and job1 at 10:00am, allowing job2 to start
shortly after 10:00am.

In this example, if job3's run limit was 2 hours, it would not be able to backfill
job2's reserved slots, and would have to run after job2 finishes.

Limitations ◆ A job will not have an estimated start time immediately after MBD is
reconfigured.

◆ Jobs in a backfill queue cannot be preempted (a job in a backfill queue
might be running in a reserved job slot, and starting a new job in that slot
might delay the start of the big parallel job):

❖ A backfill queue cannot be preemptable.

❖ A preemptive queue whose priority is higher than the backfill queue
cannot preempt the jobs in backfill queue.

Backfilling and job
slot limits

A backfill job borrows a job slot that is already taken by another job. The
backfill job will not run at the same time as the job that reserved the job slot
first. Backfilling can take place even if the job slot limits for a host or processor
have been reached. Backfilling cannot take place if the job slot limits for users
or queues have been reached.
Administering Platform LSF 397

Allowing Jobs to Use Reserved Job Slots

398
Configuring backfill scheduling
Backfill scheduling is enabled at the queue level. Only jobs in a backfill queue
can backfill reserved job slots. If the backfill queue also allows processor
reservation, then backfilling can occur among jobs within the same queue.

Configuring a
backfill queue

To configure a backfill queue, define BACKFILL in lsb.queues.

Specify Y to enable backfilling. To disable backfilling, specify N or blank space.

Example BACKFILL=Y

Enforcing run limits
Backfill scheduling works most efficiently when all the jobs in a cluster have a
run limit specified at the job level (bsub -W). You can use the external
submission executable, esub, to make sure that all users specify a job-level run
limit.

Otherwise, you can specify ceiling and default run limits at the queue level
(RUNLIMIT in lsb.queues).

Viewing information about job start time
Use bjobs -l to view the estimated start time of a job.

Using backfill on memory
If BACKFILL is configured in a queue, and a run limit is specified with -W on
bsub or with RUNLIMIT in the queue, backfill jobs can use the accumulated
memory reserved by the other jobs, as long as the backfill job can finish before
the predicted start time of the jobs with the reservation.

Unlike slot reservation, which only applies to parallel jobs, backfill on memory
applies to sequential and parallel jobs.

The following queue enables both memory reservation and backfill on
memory in the same queue:

Begin Queue
QUEUE_NAME = reservation_backfill
DESCRIPTION = For resource reservation and backfill
PRIORITY = 40
RESOURCE_RESERVE = MAX_RESERVE_TIME[20]
BACKFILL = Y
End Queue
Administering Platform LSF

Chapter 33
Running Parallel Jobs
Examples of memory reservation and backfill on memory

lsb.queues The following queues are defined in lsb.queues:

Begin Queue
QUEUE_NAME = reservation
DESCRIPTION = For resource reservation
PRIORITY=40
RESOURCE_RESERVE = MAX_RESERVE_TIME[20]
End Queue

Begin Queue
QUEUE_NAME = backfill
DESCRIPTION = For backfill scheduling
PRIORITY = 30
BACKFILL = y
End Queue

lsb.params Per-slot memory reservation is enabled by RESOURCE_RESERVE_PER_SLOT=y
in lsb.params.

Assumptions Assume one host in the cluster with 10 CPUs and 1 GB of free memory
currently available.

Sequential jobs Each of the following sequential jobs requires 400 MB of memory. The first
three jobs will run for 300 minutes.

◆ Job 1:
% bsub -W 300 -R "rusage[mem=400]" -q reservation myjob1

The job will start running, using 400M of memory and one job slot.

◆ Job 2:

Submitting a second job with same requirements will get the same result.

◆ Job 3:

Submitting a third job with same requirements will reserve one job slot,
and reserve all free memory, if the amount of free memory is between 20
MB and 200 MB (some free memory may be used by the operating system
or other software.)

◆ Job 4:
% bsub -W 400 -q backfill -R "rusage[mem=50]" myjob4

The job will keep pending, since memory is reserved by job 3 and it will
run longer than job 1 and job 2.

◆ Job 5:
% bsub -W 100 -q backfill -R "rusage[mem=50]" myjob5

The job will start running. It uses one free slot and memory reserved by
job 3. If the job does not finish in 100 minutes, it will be killed by LSF
automatically.
Administering Platform LSF 399

Allowing Jobs to Use Reserved Job Slots

400
◆ Job 6:
% bsub -W 100 -q backfill -R "rusage[mem=300]" myjob6

The job will keep pending with no resource reservation because it cannot
get enough memory from the memory reserved by job 3.

◆ Job 7:
% bsub -W 100 -q backfill myjob7

The job will start running. LSF assumes it does not require any memory and
enough job slots are free.

Parallel jobs Each process of a parallel job requires 100 MB memory, and each parallel job
needs 4 cpus. The first two of the following parallel jobs will run for 300
minutes.

◆ Job 1:
% bsub -W 300 -n 4 -R "rusage[mem=100]" -q reservation myJob1

The job will start running and use 4 slots and get 400MB memory.

◆ Job 2:

Submitting a second job with same requirements will get the same result.

◆ Job 3:

Submitting a third job with same requirements will reserve 2 slots, and
reserve all 200 MB of available memory, assuming no other applications
are running outside of LSF.

◆ Job 4:
% bsub -W 400 -q backfill -R "rusage[mem=50]" myJob4

The job will keep pending since all available memory is already reserved
by job 3. It will run longer than job 1 and job 2, so no backfill happens.

◆ Job 5:
% bsub -W 100 -q backfill -R "rusage[mem=50]" myJob5

This job will start running. It can backfill the slot and memory reserved by
job 3. If the job does not finish in 100 minutes, it will be killed by LSF
automatically.
Administering Platform LSF

Chapter 33
Running Parallel Jobs
Parallel Fairshare
LSF can consider the number of CPUs when using fairshare scheduling with
parallel jobs.

If the job is submitted with bsub -n, the following formula is used to calculate
dynamic priority:

dynamic priority = number_shares / (cpu_time * CPU_TIME_FACTOR +
run_time * number_CPUs * RUN_TIME_FACTOR + (1 + job_slots)*
RUN_JOB_FACTOR)

where number_CPUs is the number of CPUs used by the job.

Configuring parallel fairshare
To configure parallel fairshare:

1 Configure fairshare at the queue or host partition level as indicated in
“Fairshare Scheduling” on page 173.

2 To enable parallel fairshare, set the parameter LSB_NCPU_ENFORCE=1 in
lsf.conf.

3 To make your changes take effect, use the following commands to restart
all LSF daemons:
lsadmin reconfig

lsadmin resrestart all

badmin hrestart all

badmin reconfig
Administering Platform LSF 401

How Deadline Constraint Scheduling Works For Parallel Jobs

402
How Deadline Constraint Scheduling Works For
Parallel Jobs

For information about deadline constraint scheduling, see “Deadline Constraint
Scheduling” on page 150. Deadline constraint scheduling is enabled by default.

If deadline constraint scheduling is enabled and a parallel job has a CPU limit
but no run limit, LSF considers the number of processors when calculating how
long the job will take.

LSF assumes that the minimum number of processors will be used, and that
they will all be the same speed as the candidate host. If the job cannot finish
under these conditions, LSF will not place the job.

The formula is:

(deadline time - current time) > (CPU limit on candidate host / minimum
number of processors)
Administering Platform LSF

C H A P T E R

34
Advance Reservation

Contents ◆ “About Advance Reservation” on page 404

◆ “Configuring Advance Reservation” on page 405

◆ “Using Advance Reservation” on page 406
Administering Platform LSF 403

About Advance Reservation

404
About Advance Reservation
Advance reservations guarantee access to specific hosts during specified times.
An advance reservation is essentially a lock on a number of processors. Each
reservation consists of the number of processors to reserve, a list of hosts for
the reservation, a start time, an end time, and an owner. The reservation is
active only within the time frame specified, and any given host may have
several reservations in place, some of which may be active at the same time.

During the time the reservation is active, only users or groups associated with
the reservation have access to run jobs on the reserved hosts. Reservations can
also be created for system maintenance. If a system reservation is active, no
other jobs can use the reserved hosts.

Just before an advance reservation becomes active, jobs using reserved slots
are suspended if any pending jobs are waiting to use the reservation. Advance
reservation is similar to job preemption: LSF only suspends other jobs when
both compete for the same job slots. If there are enough job slots, advance
reservation does not suspend any other jobs, and jobs using a reservation will
be scheduled as normal.

LSF treats advance reservation like other deadlines, such as dispatch windows
or run windows; LSF does not schedule long-running jobs that are likely to be
suspended when a reservation becomes active. Jobs referencing the
reservation are killed when the reservation expires. LSF administrators can
extend an advance reservation by changing the termination time of the job
(bmod -t).

Only LSF administrators or root can create or delete advance reservations. Any
LSF user can view existing advance reservations.
Administering Platform LSF

Chapter 34
Advance Reservation
Configuring Advance Reservation

Advance reservation plugin
To enable advance reservation in your cluster, configure the advance
reservation scheduling plugin schmod_advrsv in lsb.modules.

Configuring lsb.modules
Begin PluginModule
SCH_PLUGIN RB_PLUGIN SCH_DISABLE_PHASES
schmod_default () ()
schmod_advrsv () ()
End PluginModule

Advance reservation license
Advance reservation requires the lsf_sched_advance_reservation license
feature in your license file and LSF_Sched_Advance_Reservation
configured in the PRODUCTS line of lsf.cluster.cluster_name.

Allowing users to create advance reservations
By default, only LSF administrators or root can add or delete advance
reservations. To allow users to add or delete their own advance reservations
without administrator intervention, set USER_ADVANCE_RESERVATION=y in
lsb.params.

When USER_ADVANCE_RESERVATION is set, users can add reservations for
themselves or any other user or user group. For example, User user1 can add
reservation for user user2:

% user1@hostB> brsvadd -m "hostA" -n 1 -u "user2" -t "12:0-14:0"
Reservation "user2#2" is created

Users can only delete reservations they created themselves. In the example
above, only user user1 can delete the reservation; user2 cannot.
Administrators can delete any reservations created by users.
Administering Platform LSF 405

Using Advance Reservation

406
Using Advance Reservation

Advance reservation commands
Use the following commands to work with advance reservations:

brsvadd Add a reservation

brsvdel Delete a reservation

brsvs View reservations

Adding and removing reservations

By default, only LSF administrators or root can add or delete advance
reservations.

brsvadd
command

Use brsvadd to create new advance reservations. You must specify the
following for the reservation:

◆ Number of processors to reserve

This number should less than or equal to the actual number of CPUs for
the hosts defined in the reservation.

◆ Hosts for the reservation

◆ Owners of the reservation

◆ Time period for the reservation: Either:

❖ Begin time and end time for a one-time reservation

OR

❖ Time window for a recurring reservation

The brsvadd command returns a reservation ID that you use when you submit
a job that uses the reserved hosts. Any single user or user group can have a
maximum of 100 reservation IDs.

Adding a one-time
reservation (-b

and -e)

Use the -b and -e options of brsvadd to specify the begin time and end time
of a one-time advance reservation.

The day and time are in the form:

[[month:]day:]hour:minute

with the following ranges:

◆ month: 1-12

◆ day of the month: 1-31

◆ hour: 0-23

◆ minute: 0-59
Administering Platform LSF

Chapter 34
Advance Reservation
You must specify at least hour:minute. Month and day are optional. If three
fields are given, they are assumed to be day:hour:minute and four fields are
assumed to be month:day:hour:minute.

If you do not specify a day, LSF assumes the current day. If you do not specify
a month, LSF assumes the current month.

You must specify a begin and an end time. The time value for -b must use the
same syntax as the time value for -e. It must be earlier than the time value for
-e, and cannot be earlier than the current time.

Example The following command creates a one-time advance reservation for 1024
processors on host hostA for user user1 between 6:00 a.m. and 8:00 a.m.
today:

% brsvadd -n 1024 -m hostA -u user1 -b 6:0 -e 8:0
Reservation "user1#0" is created

The hosts specified by -m can be local to the cluster or hosts leased from
remote clusters.

One-time reservations are useful for dedicating hosts to a specific user or group
for critical projects.

Adding a
recurring

reservation (-t)

Use the -t option of brsvadd to specify a recurring advance reservation. The
-t option specifies a time window for the reservation.

The day and time are in the form:

[day:]hour[:minute]

with the following ranges:

◆ day of the week: 0-6

◆ hour: 0-23

◆ minute: 0-59

Specify a time window one of the following ways:

◆ hour-hour

◆ hour:minute-hour:minute

◆ day:hour:minute-day:hour:minute

You must specify at least the hour. Day of the week and minute are optional.
Both the start time and end time values must use the same syntax. If you do
not specify a minute, LSF assumes the first minute of the hour (:00). If you do
not specify a day, LSF assumes every day of the week. If you do specify the
day, you must also specify the minute.

When the job starts running, the run limit of the reservation is set to the
minimum of the job run limit (if specified), the queue run limit (if specified),
or the duration of the reservation time window. LSF administrators can extend
an advance reservation by changing the termination time of the job (bmod -t).
Administering Platform LSF 407

Using Advance Reservation

408
Examples ◆ The following command creates an advance reservation for 1024
processors on two hosts hostA and hostB for user group groupA every
Wednesday from 12:00 midnight to 3:00 a.m.:
% brsvadd -n 2048 -m "hostA hostB" -g groupA -t "3:0:0-3:3:0"
Reservation "groupA#0" is created

◆ The following command creates an advance reservation for 1024
processors on hostA for user user2 every weekday from 12:00 noon to
2:00 p.m.:
% brsvadd -n 1024 -m "hostA" -u user2 -t "12:0-14:0"
Reservation "user2#0" is created

◆ Recurring reservations are useful for scheduling regular system
maintenance jobs. The following command creates a system reservation on
hostA every Friday from 6:00 p.m. to 8:00 p.m.:
% brsvadd -n 1024 -m hostA -s -t "5:18:0-5:20:0"
Reservation "system#0" is created

Removing an
advance

reservation
(brsvdel)

Use brsvdel to delete reservations. Specify the reservation ID for the
reservation you want to delete. For example:

% brsvdel user1#0
Reservation user1#0 is being deleted

You can only delete one reservation at a time.

For more
information

See Chapter 10, “Time Syntax and Configuration” for more information about
specifying time windows in LSF.

Viewing reservations

brsvs command Use brsvs to show current reservations:

% brsvs
RSVID TYPE USER NCPUS RSV_HOSTS TIME_WINDOW
user1#0 user user1 1024 hostA:1024 11/12/6/0-11/12/8/0
user2#0 user user2 1024 hostA:1024 12:0-14:0 *
groupA#0 group groupA 2048 hostA:1024 3:0:0-3:3:0 *

hostB:1024
system#0 sys system 1024 hostA:1024 5:18:0-5:20:0 *

In the TIME_WINDOW column:

◆ A one-time reservation displays fields separated by slashes
(month/day/hour/minute). For example:
11/12/14/0-11/12/18/0

◆ A recurring reservation displays fields separated by colons
(day:hour:minute). An asterisk (*) indicates a recurring reservation. For
example:
5:18:0 5:20:0 *
Administering Platform LSF

Chapter 34
Advance Reservation
Showing a weekly
planner (brsvs -p)

Use brsvs -p to show a weekly planner for specified hosts using advance
reservation. The all keyword shows the planner for all hosts with
reservations:

% brsvs -p all
RSVID TYPE USER NCPUS RSV_HOSTS TIME_WINDOW
user1#0 user user1 1024 hostA:1024 11/12/6/0-11/12/8/0
user2#0 user user2 1024 hostA:1024 12:0-14:0 *
groupA#0 group groupA 2048 hostA:1024 3:0:0-3:3:0 *

hostB:1024
system#0 sys system 1024 hostA:1024 5:18:0-5:20:0 *

HOST: hostA (MAX = 1024)
Week: 11/11/2001 - 11/17/2001
Hour:Min Sun Mon Tue Wed Thu Fri Sat

0:0 0 0 0 1024 0 0 0
0:10 0 0 0 1024 0 0 0
0:20 0 0 0 1024 0 0 0
0:30 0 0 0 1024 0 0 0
0:40 0 0 0 1024 0 0 0
0:50 0 0 0 1024 0 0 0
1:0 0 0 0 1024 0 0 0
1:10 0 0 0 1024 0 0 0
1:20 0 0 0 1024 0 0 0
1:30 0 0 0 1024 0 0 0
1:40 0 0 0 1024 0 0 0
1:50 0 0 0 1024 0 0 0
2:0 0 0 0 1024 0 0 0
2:10 0 0 0 1024 0 0 0
2:20 0 0 0 1024 0 0 0
2:30 0 0 0 1024 0 0 0
2:40 0 0 0 1024 0 0 0
2:50 0 0 0 1024 0 0 0
3:0 0 0 0 0 0 0 0
3:10 0 0 0 0 0 0 0
3:20 0 0 0 0 0 0 0
3:30 0 0 0 0 0 0 0
3:40 0 0 0 0 0 0 0
3:50 0 0 0 0 0 0 0
4:0 0 0 0 0 0 0 0
4:10 0 0 0 0 0 0 0
4:20 0 0 0 0 0 0 0
4:30 0 0 0 0 0 0 0
4:40 0 0 0 0 0 0 0
4:50 0 0 0 0 0 0 0
5:0 0 0 0 0 0 0 0
5:10 0 0 0 0 0 0 0
5:20 0 0 0 0 0 0 0
5:30 0 0 0 0 0 0 0
5:40 0 0 0 0 0 0 0
5:50 0 0 0 0 0 0 0
6:0 0 1024 0 0 0 0 0
6:10 0 1024 0 0 0 0 0
6:20 0 1024 0 0 0 0 0
6:30 0 1024 0 0 0 0 0
6:40 0 1024 0 0 0 0 0
Administering Platform LSF 409

Using Advance Reservation

410
6:50 0 1024 0 0 0 0 0
7:0 0 1024 0 0 0 0 0
7:10 0 1024 0 0 0 0 0
7:20 0 1024 0 0 0 0 0
7:30 0 1024 0 0 0 0 0
7:40 0 1024 0 0 0 0 0
7:50 0 1024 0 0 0 0 0
8:0 0 0 0 0 0 0 0
8:10 0 0 0 0 0 0 0
8:20 0 0 0 0 0 0 0
8:30 0 0 0 0 0 0 0
8:40 0 0 0 0 0 0 0
8:50 0 0 0 0 0 0 0
9:0 0 0 0 0 0 0 0
9:10 0 0 0 0 0 0 0
9:20 0 0 0 0 0 0 0
9:30 0 0 0 0 0 0 0
9:40 0 0 0 0 0 0 0
9:50 0 0 0 0 0 0 0
10:0 0 0 0 0 0 0 0
10:10 0 0 0 0 0 0 0
10:20 0 0 0 0 0 0 0
10:30 0 0 0 0 0 0 0
10:40 0 0 0 0 0 0 0
10:50 0 0 0 0 0 0 0
11:0 0 0 0 0 0 0 0
11:10 0 0 0 0 0 0 0
11:20 0 0 0 0 0 0 0
11:30 0 0 0 0 0 0 0
11:40 0 0 0 0 0 0 0
11:50 0 0 0 0 0 0 0
12:0 1024 1024 1024 1024 1024 1024 1024
12:10 1024 1024 1024 1024 1024 1024 1024
12:20 1024 1024 1024 1024 1024 1024 1024
12:30 1024 1024 1024 1024 1024 1024 1024
12:40 1024 1024 1024 1024 1024 1024 1024
12:50 1024 1024 1024 1024 1024 1024 1024
13:0 1024 1024 1024 1024 1024 1024 1024
13:10 1024 1024 1024 1024 1024 1024 1024
13:20 1024 1024 1024 1024 1024 1024 1024
13:30 1024 1024 1024 1024 1024 1024 1024
13:40 1024 1024 1024 1024 1024 1024 1024
13:50 1024 1024 1024 1024 1024 1024 1024
14:0 0 0 0 0 0 0 0
14:10 0 0 0 0 0 0 0
14:20 0 0 0 0 0 0 0
14:30 0 0 0 0 0 0 0
14:40 0 0 0 0 0 0 0
14:50 0 0 0 0 0 0 0
15:0 0 0 0 0 0 0 0
15:10 0 0 0 0 0 0 0
15:20 0 0 0 0 0 0 0
15:30 0 0 0 0 0 0 0
15:40 0 0 0 0 0 0 0
15:50 0 0 0 0 0 0 0
16:0 0 0 0 0 0 0 0
16:10 0 0 0 0 0 0 0
Administering Platform LSF

Chapter 34
Advance Reservation
16:20 0 0 0 0 0 0 0
16:30 0 0 0 0 0 0 0
16:40 0 0 0 0 0 0 0
16:50 0 0 0 0 0 0 0
17:0 0 0 0 0 0 0 0
17:10 0 0 0 0 0 0 0
17:20 0 0 0 0 0 0 0
17:30 0 0 0 0 0 0 0
17:40 0 0 0 0 0 0 0
17:50 0 0 0 0 0 0 0
18:0 0 0 0 0 0 1024 0
18:10 0 0 0 0 0 1024 0
18:20 0 0 0 0 0 1024 0
18:30 0 0 0 0 0 1024 0
18:40 0 0 0 0 0 1024 0
18:50 0 0 0 0 0 1024 0
19:0 0 0 0 0 0 1024 0
19:10 0 0 0 0 0 1024 0
19:20 0 0 0 0 0 1024 0
19:30 0 0 0 0 0 1024 0
19:40 0 0 0 0 0 1024 0
19:50 0 0 0 0 0 1024 0
20:0 0 0 0 0 0 0 0
20:10 0 0 0 0 0 0 0
20:20 0 0 0 0 0 0 0
20:30 0 0 0 0 0 0 0
20:40 0 0 0 0 0 0 0
20:50 0 0 0 0 0 0 0
21:0 0 0 0 0 0 0 0
21:10 0 0 0 0 0 0 0
21:20 0 0 0 0 0 0 0
21:30 0 0 0 0 0 0 0
21:40 0 0 0 0 0 0 0
21:50 0 0 0 0 0 0 0
22:0 0 0 0 0 0 0 0
22:10 0 0 0 0 0 0 0
22:20 0 0 0 0 0 0 0
22:30 0 0 0 0 0 0 0
22:40 0 0 0 0 0 0 0
22:50 0 0 0 0 0 0 0
23:0 0 0 0 0 0 0 0
23:10 0 0 0 0 0 0 0
23:20 0 0 0 0 0 0 0
23:30 0 0 0 0 0 0 0
23:40 0 0 0 0 0 0 0
23:50 0 0 0 0 0 0 0

HOST: hostB (MAX = 1024)
Week: 11/11/2001 - 11/17/2001
Hour:Min Sun Mon Tue Wed Thu Fri Sat

0:0 0 0 0 1024 0 0 0
0:10 0 0 0 1024 0 0 0
0:20 0 0 0 1024 0 0 0
0:30 0 0 0 1024 0 0 0
0:40 0 0 0 1024 0 0 0
Administering Platform LSF 411

Using Advance Reservation

412
0:50 0 0 0 1024 0 0 0
1:0 0 0 0 1024 0 0 0
1:10 0 0 0 1024 0 0 0
1:20 0 0 0 1024 0 0 0
1:30 0 0 0 1024 0 0 0
1:40 0 0 0 1024 0 0 0
1:50 0 0 0 1024 0 0 0
2:0 0 0 0 1024 0 0 0
2:10 0 0 0 1024 0 0 0
2:20 0 0 0 1024 0 0 0
2:30 0 0 0 1024 0 0 0
2:40 0 0 0 1024 0 0 0
2:50 0 0 0 1024 0 0 0
3:0 0 0 0 0 0 0 0
3:10 0 0 0 0 0 0 0
3:20 0 0 0 0 0 0 0
3:30 0 0 0 0 0 0 0
3:40 0 0 0 0 0 0 0
3:50 0 0 0 0 0 0 0

...

23:0 0 0 0 0 0 0 0
23:10 0 0 0 0 0 0 0
23:20 0 0 0 0 0 0 0
23:30 0 0 0 0 0 0 0
23:40 0 0 0 0 0 0 0
23:50 0 0 0 0 0 0 0

bjobs command Use bjobs -l to show the reservation ID used by a job:

% bjobs -l
Job <1152>, User <user1>, Project <default>, Status <PEND>, Queue
<normal>, Reservation <user1#0>, Command <myjob>

Mon Nov 12 5:13:21: Submitted from host <hostB>, CWD
</home/user1/jobs>;

Submitting and modifying jobs using advance reservations

Submitting and
running jobs

(bsub -U)

Use the -U option of bsub to submit jobs with a reservation ID. For example:

%bsub -U user1#0 myjob

The job can only use hosts reserved by the reservation user1#0. By default,
LSF selects only hosts in the reservation. Use the -m option to specify particular
hosts within the list of hosts reserved by the reservation; you can only select
from hosts that were included in the original reservation.

If you do not specify hosts (bsub -m) or resource requirements (bsub -R), the
default resource requirement is to select hosts that are of any host type (LSF
assumes "type==any" instead of "type==local" as the default select string.)
Administering Platform LSF

Chapter 34
Advance Reservation
A job can only use one reservation. There is no restriction on the number of
jobs that can be submitted to a reservation; however, the number of slots
available on the hosts in the reservation may run out. For example, reservation
user2#0 reserves 1024 slots on hostA. When all 1024 slots on hostA are used
by jobs referencing user2#0, hostA is no longer available to other jobs using
reservation user2#0. Any single user or user group can have a maximum of
100 reservation IDs.

Jobs referencing the reservation are killed when the reservation expires. LSF
administrators can extend an advance reservation by changing the termination
time of the job (bmod -t).

Modifying jobs
(bmod -U)

Administrators can use the -U option of bmod to change a job to another
reservation ID of. For example:

%bmod -U user1#0 1234

To cancel the reservation, use the -Un option of bmod. For example:

%bmod -Un 1234

Extending
reservations

(bmod -t)

Administrators can extend the reservation by using the -t option of bmod to
change the termination time of the job. This prevents the job from being killed
when the reservation expires. For example:

%bmod -t 15:0 1234

Job resource
usage limits

A job using a reservation is subject to all job resource usage limits. If a limit is
reached on a particular host in a reservation, jobs using that reservation cannot
start on that host.

Preemption and
fairshare

Higher priority jobs can only preempt other jobs that use the same reservation.
In fairshare, a lower priority job can run as long as no other higher priority
share holders can access the same reservation as the lower priority job.

Forcing a job to run before a reservation is active
LSF administrators can use brun to force jobs to run before the reservation is
active, but the job must finish running before the time window of the
reservation expires.

For example, if the administrator forces a job with a reservation to run one
hour before the reservation is active, and the reservation period is 3 hours, a
4 hour run limit takes effect.
Administering Platform LSF 413

Using Advance Reservation

414
 Administering Platform LSF

P A R T

VIII
Monitoring Your Cluster

Contents ◆ Chapter 35, “Event Generation”

◆ Chapter 36, “Tuning the Cluster”

◆ Chapter 37, “Authentication”

◆ Chapter 38, “Job Email, and Job File Spooling”

◆ Chapter 39, “Non-Shared File Systems”

◆ Chapter 40, “Error and Event Logging”

◆ Chapter 41, “Troubleshooting and Error Messages”

C H A P T E R

35
Event Generation

Contents ◆ “Event Generation” on page 418

◆ “Enabling event generation” on page 418

◆ “Events list” on page 419

◆ “Arguments passed to the LSF event program” on page 419
Administering Platform LSF 417

Event Generation

418
Event Generation
LSF detects events occurring during the operation of LSF daemons. LSF
provides a program which translates LSF events into SNMP traps. You can also
write your own program that runs on the master host to interpret and respond
to LSF events in other ways. For example, your program could:

◆ Page the system administrator

◆ Send email to all users

◆ Integrate with your existing network management software to validate and
correct the problem

On Windows NT, use the Windows NT Event Viewer to view LSF events.

Enabling event generation

SNMP trap
program

If you use the LSF SNMP trap program as the event handler, see the SNMP
documentation for instructions on how to enable event generation.

Custom event
handling

programs

If you use a custom program to handle the LSF events, take the following steps
to enable event generation.

1 Write a custom program to interpret the arguments passed by LSF. See
“Arguments passed to the LSF event program” on page 419 and “Events list”
on page 419 for more information.

2 To enable event generation, define LSF_EVENT_RECEIVER in lsf.conf.
You must specify an event receiver even if your program ignores it.

The event receiver maintains cluster-specific or changeable information
that you do not want to hard-code into the event program. For example,
the event receiver could be the path to a current log file, the email address
of the cluster administrator, or the host to send SNMP traps to.

3 Set LSF_EVENT_PROGRAM in lsf.conf and specify the name of your
custom event program. If you name your event program genevent
(genevent.exe on Windows) and place it in LSF_SERVERDIR, you can
skip this step.

4 Reconfigure the cluster with the commands lsadmin reconfig and
badmin reconfig.
Administering Platform LSF

Chapter 35
Event Generation
Events list
The following daemon operations cause mbatchd or the master LIM to call the
event program to generate an event. Each LSF event is identified by a
predefined number, which is passed as an argument to the event program.
Events 1-9 also return the name of the host on which on an event occurred.

1 LIM goes down (detected by the master LIM). This event may also occur if
LIM temporarily stops communicating to the master LIM.

2 RES goes down (detected by the master LIM).

3 sbatchd goes down (detected by mbatchd).

4 An LSF server or client host becomes unlicensed (detected by the master
LIM).

5 A host becomes the new master host (detected by the master LIM).

6 The master host stops being the master (detected by the master LIM).

7 mbatchd comes up and is ready to schedule jobs (detected by mbatchd).

8 mbatchd goes down (detected by mbatchd).

9 mbatchd receives a reconfiguration request and is being reconfigured
(detected by mbatchd).

10 LSB_SHAREDIR becomes full (detected by mbatchd).

Arguments passed to the LSF event program
If LSF_EVENT_RECEIVER is defined, a function called ls_postevent() allows
specific daemon operations to generate LSF events. This function then calls the
LSF event program and passes the following arguments:

◆ The event receiver (LSF_EVENT_RECEIVER in lsf.conf)

◆ The cluster name

◆ The LSF event number (LSF events list or LSF_EVENT_XXXX macros in
lsf.h)

◆ The event argument (for events that take an argument)

Example For example, if the event receiver is the string xxx and LIM goes down on
HostA in Cluster1, the function returns:

xxx Cluster1 1 HostA

The custom LSF event program can interpret or ignore these arguments.
Administering Platform LSF 419

Event Generation

420
 Administering Platform LSF

C H A P T E R

36
Tuning the Cluster

Contents ◆ “Tuning LIM” on page 422

◆ “Tuning mbatchd on UNIX” on page 432
Administering Platform LSF 421

Tuning LIM

422
Tuning LIM
LIM provides critical services to all LSF components. In addition to the timely
collection of resource information, LIM provides host selection and job
placement policies. If you are using LSF MultiCluster, LIM determines how
different clusters should exchange load and resource information. You can
tune LIM policies and parameters to improve performance.

LIM uses load thresholds to determine whether to place remote jobs on a host.
If one or more LSF load indices exceeds the corresponding threshold (too
many users, not enough swap space, etc.), then the host is regarded as busy
and LIM will not recommend jobs to that host. You can also tune LIM load
thresholds.

You can also change default LIM behavior and pre-select hosts to be elected
master to improve performance.

In this section ◆ “Adjusting LIM Parameters” on page 423

◆ “Load Thresholds” on page 424

◆ “Changing Default LIM Behavior to Improve Performance” on page 428
Administering Platform LSF

Chapter 36
Tuning the Cluster
Adjusting LIM Parameters
There are two main goals in adjusting LIM configuration parameters: improving
response time, and reducing interference with interactive use. To improve
response time, tune LSF to correctly select the best available host for each job.
To reduce interference, tune LSF to avoid overloading any host.

LIM policies are advisory information for applications. Applications can either
use the placement decision from LIM, or make further decisions based on
information from LIM.

Most of the LSF interactive tools use LIM policies to place jobs on the network.
LSF uses load and resource information from LIM and makes its own placement
decisions based on other factors in addition to load information.

Files that affect LIM are lsf.shared, lsf.cluster.cluster_name, where
cluster_name is the name of your cluster.

RUNWINDOW parameter
LIM thresholds and run windows affect the job placement advice of LIM. Job
placement advice is not enforced by LIM.

The RUNWINDOW parameter defined in lsf.cluster.cluster_name
specifies one or more time windows during which a host is considered
available. If the current time is outside all the defined time windows, the host
is considered locked and LIM will not advise any applications to run jobs on
the host.
Administering Platform LSF 423

Load Thresholds

424
Load Thresholds
Load threshold parameters define the conditions beyond which a host is
considered busy by LIM and are a major factor in influencing performance. No
jobs will be dispatched to a busy host by LIM’s policy. Each of these parameters
is a load index value, so that if the host load goes beyond that value, the host
becomes busy.

LIM uses load thresholds to determine whether to place remote jobs on a host.
If one or more LSF load indices exceeds the corresponding threshold (too
many users, not enough swap space, etc.), then the host is regarded as busy
and LIM will not recommend jobs to that host.

Thresholds can be set for any load index supported internally by the LIM, and
for any external load index.

If a particular load index is not specified, LIM assumes that there is no
threshold for that load index. Define looser values for load thresholds if you
want to aggressively run jobs on a host.

See “Load Thresholds” on page 303 for more details.

In this section ◆ “Load indices that affect LIM performance” on page 424

◆ “Comparing LIM load thresholds” on page 425

◆ “If LIM often reports a host as busy” on page 425

◆ “If interactive jobs slow down response” on page 426

◆ “Multiprocessor systems” on page 426

◆ “Load thresholds and lsb.hosts” on page 426

Load indices that affect LIM performance

For more details on load indices see “Load Indices” on page 120.

Load index Description

r15s 15-second CPU run queue length

r1m 1-minute CPU run queue length

r15m 15-minute CPU run queue length

pg Paging rate in pages per second

swp Available swap space

it Interactive idle time

ls Number of users logged in
Administering Platform LSF

Chapter 36
Tuning the Cluster
Comparing LIM load thresholds
To tune LIM load thresholds, compare the output of lsload to the thresholds
reported by lshosts -l.

The lsload and lsmon commands display an asterisk * next to each load
index that exceeds its threshold.

Example For example, consider the following output from lshosts -l and lsload:

% lshosts -l
HOST_NAME: hostD
...
LOAD_THRESHOLDS:

r15s r1m r15m ut pg io ls it tmp swp mem
- 3.5 - - 15 - - - - 2M 1M

HOST_NAME: hostA
...
LOAD_THRESHOLDS:

r15s r1m r15m ut pg io ls it tmp swp mem
- 3.5 - - 15 - - - - 2M 1M

% lsload
HOST_NAME status r15s r1m r15m ut pg ls it tmp swp mem
hostD ok 0.0 0.0 0.0 0% 0.0 6 0 30M 32M 10M
hostA busy 1.9 2.1 1.9 47% *69.6 21 0 38M 96M 60M

In this example:

◆ hostD is ok.

◆ hostA is busy—The pg (paging rate) index is 69.6, above the threshold of
15.

If LIM often reports a host as busy
If LIM often reports a host as busy when the CPU utilization and run queue
lengths are relatively low and the system is responding quickly, the most likely
cause is the paging rate threshold. Try raising the pg threshold.

Different operating systems assign subtly different meanings to the paging rate
statistic, so the threshold needs to be set at different levels for different host
types. In particular, HP-UX systems need to be configured with significantly
higher pg values; try starting at a value of 50.

There is a point of diminishing returns. As the paging rate rises, eventually the
system spends too much time waiting for pages and the CPU utilization
decreases. Paging rate is the factor that most directly affects perceived
interactive response. If a system is paging heavily, it feels very slow.
Administering Platform LSF 425

Load Thresholds

426
If interactive jobs slow down response
If you find that interactive jobs slow down system response too much while
LIM still reports your host as ok, reduce the CPU run queue lengths (r15s, r1m,
r15m). Likewise, increase CPU run queue lengths if hosts become busy at low
loads.

Multiprocessor systems
On multiprocessor systems, CPU run queue lengths (r15s, r1m, r15m) are
compared to the effective run queue lengths as displayed by the lsload -E
command.

CPU run queue lengths should be configured as the load limit for a single
processor. Sites with a variety of uniprocessor and multiprocessor machines
can use a standard value for r15s, r1m and r15m in the configuration files, and
the multiprocessor machines will automatically run more jobs.

Note that the normalized run queue length displayed by lsload -N is scaled
by the number of processors. See “Load Indices” on page 120 and
lsfintro(1) for the concept of effective and normalized run queue lengths.

Load thresholds and lsb.hosts
The lsb.hosts file defines host attributes. Host attributes also affect the
scheduling decisions of LSF.

See the Platform LSF Reference for information about the lsb.hosts file.

Hosts, job slot limits and load thresholds
By default LSF uses all server hosts in the cluster. All hosts do not need to be
included in the Host section. For example:

Begin Host
HOST_NAME MXJ JL/U swp # This line is keyword(s)
default 2 1 20
End Host

This example defines a total allowed job slot limit of 2 and a per user job limit
of 1 for every batch server host. It also defines a scheduling load threshold of
20 MB of swap memory.

The virtual host name default refers to all server hosts in the cluster not
explicitly mentioned in the Host section of lsb.hosts.
Administering Platform LSF

Chapter 36
Tuning the Cluster
Host types or models
In heterogeneous clusters, you may have different controls for different
machines. For example:

Begin Host
HOST_NAME MXJ JL/U swp # This line is keyword(s)
hostA 8 2 ()
hppa 2 () ()
default 2 1 20
End Host

This example adds the host type hppa in the HOST_NAME column. This type
includes all server hosts in the cluster that have host type hppa and are not
explicitly listed in the Host section of this file. You can also use a host model
name for this purpose. The () in a column refers to undefined parameters, and
serves as a placeholder for that column.
Administering Platform LSF 427

Changing Default LIM Behavior to Improve Performance

428
Changing Default LIM Behavior to Improve
Performance

You may want to change the default LIM behavior in the following cases:

◆ In very large sites. As the size of the cluster becomes large (500 hosts or
more), reconfiguration of the cluster causes each LIM to re-read the
configuration files. This can take quite some time.

◆ In sites where each host in the cluster cannot share a common
configuration directory or exact replica.

In this section ◆ “Default LIM behavior” on page 428

◆ “Change default LIM behavior” on page 428

◆ “Reconfiguration and LSF_MASTER_LIST” on page 429

◆ “How LSF works with LSF_MASTER_LIST” on page 429

◆ “Considerations” on page 430

Default LIM behavior
By default, each LIM running in an LSF cluster must read the configuration files
lsf.shared and lsf.cluster.cluster_name to obtain information about
resource definitions, host types, host thresholds, etc. This includes master and
slave LIMs.

This requires that each host in the cluster share a common configuration
directory or an exact replica of the directory.

Change default LIM behavior
The parameter LSF_MASTER_LIST in lsf.conf allows you to identify for the
LSF system which hosts can become masters. Hosts not listed in
LSF_MASTER_LIST will be considered as slave-only hosts and will never be
considered to become master.

By setting this parameter, you can reduce the time it takes to reconfigure a
cluster and requests made to the file server. Only hosts listed in
LSF_MASTER_LIST will read lsf.shared and lsf.cluster.cluster_name.
Configuration information will then be propagated from the master LIM to
slave-only LIMs.

Setting LSF_MASTER_LIST
1 Edit lsf.conf and set the parameter LSF_MASTER_LIST to indicate hosts

that are candidates to become the master host. For example:
LSF_MASTER_LIST="hostA hostB hostC"

The order in which you specify hosts in LSF_MASTER_LIST is the preferred
order for selecting hosts to become the master LIM.

2 Save your changes.

3 Reconfigure the cluster with the commands lsadmin reconfig and
badmin reconfig.
Administering Platform LSF

Chapter 36
Tuning the Cluster
Reconfiguration and LSF_MASTER_LIST

If you change LSF_MASTER_LIST
Whenever you change the parameter LSF_MASTER_LIST, reconfigure the
cluster with lsadmin reconfig and badmin reconfig.

If you change lsf.cluster.cluster_name or lsf.shared
If you make changes that do not affect load report messages such as adding or
removing slave-only hosts, you only need to restart the LIMs on all master
candidates with the command lsadmin limrestart and the specific host
names. For example:

% lsadmin limrestart hostA hostB hostC

If you make changes that affect load report messages such as load indices, you
need to restart all the LIMs in the cluster. Use the command lsadmin
reconfig.

How LSF works with LSF_MASTER_LIST

LSF_MASTER_LIST undefined
In this example, lsf.shared and lsf.cluster.cluster_name are shared
among all LIMs through an NFS file server. The preferred master host is the first
available server host in the cluster list in lsf.cluster.cluster_name.

Any slave LIM can become the master LIM. Whenever you reconfigure, all LIMs
read lsf.shared and lsf.cluster.cluster_name to get updated
information.

For this example, slave LIMs read local lsf.conf files.

LSF_MASTER_LIST defined
The files lsf.shared and lsf.cluster.cluster_name are shared only
among LIMs listed as candidates to be elected master with the parameter
LSF_MASTER_LIST.

lsf.shared lsf.cluster.cluster_name

Master LIM

HostB

lsf.conf

HostC
slave LIM
HostD
lsf.conf lsf.conf

slave LIM
HostF

lsf.conf

slave LIM
HostG

lsf.conf

slave LIM
HostH

slave LIM
HostE
lsf.conf
Administering Platform LSF 429

Changing Default LIM Behavior to Improve Performance

430
The preferred master host is no longer the first host in the cluster list in
lsf.cluster.cluster_name, but the first host in the list specified by
LSF_MASTER_LIST in lsf.conf.

Whenever you reconfigure, only master LIM candidates read lsf.shared and
lsf.cluster.cluster_name to get updated information. The elected master
LIM sends configuration information to slave LIMs.

The order in which you specify hosts in LSF_MASTER_LIST is the preferred
order for selecting hosts to become the master LIM.

Considerations
Generally, the files lsf.cluster.cluster_name and lsf.shared for hosts
that are master candidates should be identical.

When the cluster is started up or reconfigured, LSF rereads configuration files
and compares lsf.cluster.cluster_name and lsf.shared for hosts that
are master candidates.

In some cases in which identical files are not shared, files may be out of sync.
This section describes situations that may arise should
lsf.cluster.cluster_name and lsf.shared for hosts that are master
candidates not be identical to those of the elected master host.

LSF_MASTER_LIST
undefined

When LSF_MASTER_LIST is not defined, LSF rejects candidate master hosts
from the cluster if their lsf.cluster.cluster_name and lsf.shared files
are different from the files of the elected master. Even if only comment lines
are different, hosts are rejected.

A warning is logged in the log file lim.log.master_host_name and the
cluster continues to run, but without the hosts that were rejected.

If you want the hosts that were rejected to be part of the cluster, ensure
lsf.cluster.cluster_name and lsf.shared are identical for all hosts and
restart all LIMs in the cluster with the command:

% lsadmin limrestart all

lsf.shared lsf.cluster.cluster_name

Master LIM

hostB

lsf.conf

hostC

master LIM
candidate

hostD
lsf.conf lsf.conf

slave-only
 LIM
hostF

lsf.conf lsf.conflsf.conf

LSF_MASTER_LIST=hostC hostD hostE

master LIM
candidate

hostE

slave-only
 LIM
hostG

slave-only
 LIM
hostH
Administering Platform LSF

Chapter 36
Tuning the Cluster
LSF_MASTER_LIST
Defined

When LSF_MASTER_LIST is defined, LSF only rejects candidate master hosts
listed in LSF_MASTER_LIST from the cluster if:

◆ The number of load indices in lsf.cluster.cluster_name or
lsf.shared for master candidates is different from the number of load
indices in the lsf.cluster.cluster_name or lsf.shared files of the
elected master.

A warning is logged in the log file lim.log.master_host_name and the
cluster continues to run, but without the hosts that were rejected.

If you want the hosts that were rejected to be part of the cluster, ensure the
number of load indices in lsf.cluster.cluster_name and lsf.shared
are identical for all master candidates and restart LIMs on the master and all
master candidates:

% lsadmin limrestart hostA hostB hostC

LSF_MASTER_LIST defined, and master host goes down
If LSF_MASTER_LIST is defined and the elected master host goes down, and if
the number of load indices in lsf.cluster.cluster_name or lsf.shared
for the new elected master is different from the number of load indices in the
files of the master that went down, LSF will reject all master candidates that do
not have the same number of load indices in their files as the newly elected
master. LSF will also reject all slave-only hosts. This could cause a situation in
which only the newly elected master is considered part of the cluster.

A warning is logged in the log file lim.log.new_master_host_name and the
cluster continues to run, but without the hosts that were rejected.

To resolve this, from the current master host, restart all LIMs:

% lsadmin limrestart all

All slave-only hosts will be considered part of the cluster. Master candidates
with a different number of load indices in their lsf.cluster.cluster_name
or lsf.shared files will be rejected.

When the master that was down comes back up, you will have the same
situation as described in “LSF_MASTER_LIST Defined” on page 431. You will
need to ensure load indices defined in lsf.cluster.cluster_name and
lsf.shared for all master candidates are identical and restart LIMs on all
master candidates.
Administering Platform LSF 431

Tuning mbatchd on UNIX

432
Tuning mbatchd on UNIX
On UNIX platforms that support thread programming, you can change default
mbatchd behavior to use multithreading and increase performance of query
requests when you use the bjobs command.

This may indirectly increase overall mbatchd performance.

You can view the latest information about supported operating systems for this
feature on the Platform Computing site on the World Wide Web at
www.platform.com. Look in the Online Support area.

Multithreading is beneficial for busy clusters with many jobs and frequent
query requests.

In this section ◆ “How mbatchd works without multithreading” on page 432

◆ “How mbatchd works with multithreading” on page 432

◆ “Setting a query-dedicated port for mbatchd” on page 433

◆ “Specifying an expiry time for child mbatchds” on page 434

How mbatchd works without multithreading

Ports By default, mbatchd uses the port defined by the parameter LSB_MBD_PORT
in lsf.conf or looks into the system services database for port numbers to
communicate with LIM and job request commands.

It uses this port number to receive query requests from clients.

Servicing
Requests

For every query request received, mbatchd forks a child mbatchd to service
the request. Each child mbatchd processes the request and then exits.

How mbatchd works with multithreading
To change mbatchd behavior to use multithreading, complete the following
procedures:

1 Mandatory.

Specify a query-dedicated port for the mbatchd. You do this by setting the
parameter LSB_QUERY_PORT in lsf.conf.

See “Setting a query-dedicated port for mbatchd” on page 433.

2 Optional.

Set an interval of time to indicate when a new child mbatchd is to be
forked. You do this by setting the parameter MBD_REFRESH_TIME in
lsb.params. The default value of MBD_REFRESH_TIME is 5 seconds,
and valid values are 5-300 seconds.

See “Specifying an expiry time for child mbatchds” on page 434.
Administering Platform LSF

http://www.platform.com/services/support/services/platforms4.2.asp
http://www.platform.com

Chapter 36
Tuning the Cluster
When mbatchd has a dedicated port specified by the parameter
LSB_QUERY_PORT in lsf.conf, it forks a child mbatchd which in turn
creates threads to process query requests.

As soon as mbatchd has forked a child mbatchd, the child mbatchd takes over
and listens on the port to process more query requests. For each query request,
the child mbatchd creates a thread to process it.

The child mbatchd continues to listen to the port number specified by
LSB_QUERY_PORT and creates threads to service requests until the job status
changes, a new job is submitted, or until the time specified in
MBD_REFRESH_TIME in lsb.params has passed.

◆ If MBD_REFRESH_TIME is < 10 seconds, the child mbatchd exits at
MBD_REFRESH_TIME even if the job changes status or a new job is
submitted before MBD_REFRESH_TIME expires

◆ If MBD_REFRESH_TIME > 10 seconds, the child mbatchd exits at 10
seconds even if the job changes status or a new job is submitted before the
10 seconds

◆ If MBD_REFRESH_TIME > 10 seconds and no job changes status or a new
job is submitted, the child mbatchd exits at MBD_REFRESH_TIME

Setting a query-dedicated port for mbatchd
To enable a query-dedicated port for mbatchd and change the default mbatchd
behavior so that mbatchd forks a child mbatchd that can create threads,
specify a port number with the parameter LSB_QUERY_PORT in lsf.conf.

This configuration only works on UNIX platforms that support thread
programming.

1 Log on to the host as the primary LSF administrator.

2 Edit lsf.conf.

3 Add the LSB_QUERY_PORT parameter and specify a port number that will
be dedicated to receiving requests from hosts.

4 Save the lsf.conf file.

Where to go next If you want to change the default value for MBD_REFRESH_TIME (default: 5
seconds), proceed to “Specifying an expiry time for child mbatchds” on
page 434.

Otherwise, you have completed configuration. Reconfigure the cluster with the
commands lsadmin reconfig and badmin reconfig.
Administering Platform LSF 433

Tuning mbatchd on UNIX

434
Specifying an expiry time for child mbatchds
You define how often mbatchd forks a new child mbatchd with the parameter
MBD_REFRESH_TIME in lsb.params.

The default value for this parameter is 5 seconds. Valid values are 5 to 300
seconds.

1 Log on to the host as the primary LSF administrator.

2 Edit lsb.params.

3 Add the MBD_REFRESH_TIME parameter and specify a time interval in
seconds to fork a child mbatchd.

4 Save the lsb.params file.

Reconfigure the cluster with the commands lsadmin reconfig and badmin

reconfig.
Administering Platform LSF

C H A P T E R

37
Authentication

Controlling access to remote execution has two requirements:

◆ Authenticate the user.

When a user executes a remote command, the command must be run with
that user’s permission. The LSF daemons need to know which user is
requesting the remote execution.

◆ Check access controls on the remote host.

The user must be authorized to execute commands remotely on the host.

This chapter describes user, host, and daemon authentication in LSF.

Contents ◆ “About User Authentication” on page 436

◆ “About Host Authentication” on page 442

◆ “About Daemon Authentication” on page 443

◆ “LSF in Multiple Authentication Environments” on page 444

◆ “User Account Mapping” on page 445
Administering Platform LSF 435

About User Authentication

436
About User Authentication
LSF recognizes UNIX and Windows authentication environments, including
different Windows domains and individual Windows workgroup hosts.

◆ In a UNIX environment, user accounts are validated at the system level, so
your user account is valid on all hosts.

◆ In a Windows domain environment, user accounts are validated at the
domain level, and your user account is valid on all hosts in your domain
(and might be valid in other domains, if there is a trust relationship).

◆ In a Windows workgroup environment, each host authenticates the user
account, so your local account is only valid on one host.

User authentication options
To enable LSF users to execute commands remotely, you must specify the
authentication method LSF uses to authorize remote execution across the
network.

You have the following choices:

◆ External authentication (eauth)

◆ Privileged ports (setuid)

◆ Identification daemon (identd)

If you change the authentication type while the LSF daemons are running, you
must shut down and restart the LSF daemons on each LSF server host, so that
the daemons will use the new authentication method.

External authentication (eauth)
This is the default user authentication used by LSF. It uses the LSF eauth
executable installed in LSF_SERVERDIR. Optionally, you may choose to write
your own eauth executable that uses some site-specific authentication method
such as Kerberos or DCE client authentication using the GSSAPI.

Examples of these can be found in the LSF_MISC/examples/krb and
LSF_MISC/examples/dce directories. Installation instructions are found in the
README file in these directories.

By default, eauth uses an internal key to encrypt authentication data. To use
an external key to improve security, configure the parameter LSF_EAUTH_KEY
in the lsf.sudoers file. The default eauth program is installed without
setuid permission. If you use LSF_EAUTH_KEY, eauth must be setuid.

The eauth mechanism can pass data (such as authentication credentials) from
users to execution hosts. The environment variable LSF_EAUTH_AUX_DATA
specifies the full path to a file where data, such as a credential, is stored. The
mechanisms of eauth -c and eauth -s allow the LSF daemons to pass this
data using a secure exchange.
Administering Platform LSF

Chapter 37
Authentication
eauth -c
host_name

When a command is invoked, the client program automatically executes
eauth -c host_name to get the external authentication data, where host_name
is the name of the host running the LSF daemon (for example, RES) on which
the operation will take place. The external user authentication data is passed
to LSF through the standard output of the eauth program.

eauth -s When the LSF daemon receives the request, it executes eauth -s under the
primary LSF administrator user ID to process the user authentication data.

If your site cannot run authentication under the primary LSF administrator user
ID, configure the parameter LSF_EAUTH_USER in the /etc/lsf.sudoers file.

The LSF daemon expects eauth -s to write to standard output:

◆ 1 if authentication succeeds

◆ 0 if authentication fails

The same eauth -s process can service multiple authentication requests; if
the process terminates, the LSF daemon will re-invoke eauth -s on the next
authentication request.

See the Platform LSF Reference for information about configuring the
lsf.sudoers file.

Standard input stream for the eauth program
User authentication data is passed to eauth -s via its standard input. The
standard input stream to eauth has the following format:

uid gid user_name client_addr client_port user_auth_data_len
user_auth_data

where:

◆ uid is the user ID in ASCII of the client user

◆ gid is the group ID in ASCII of the client user

◆ user_name is the user name of the client user

◆ client_addr is the host address of the client host in ASCII dot notation

◆ client_port is the port number from where the client request is made

◆ user_auth_data_len is the length of the external authentication data in
ASCII passed from the client

◆ user_auth_data is the external user authentication data passed from the
client
Administering Platform LSF 437

About User Authentication

438
Privileged ports authentication (setuid)
If you do not use external authentication, privileged ports (setuid)
authentication is used. This is the mechanism most UNIX remote utilities use.
The LSF commands must be installed as setuid programs and owned by root.

If a load-sharing program is owned by root and has the setuid bit set, the LSF
API functions use a privileged port to communicate with LSF servers, and the
servers accept the user ID supplied by the caller. This is the same user
authentication mechanism as used by the UNIX rlogin and rsh commands.

When a setuid application calls the LSLIB initialization routine, a number of
privileged ports are allocated for remote connections to LSF servers. The
effective user ID then reverts to the real user ID. Therefore, the number of
remote connections is limited.

An LSF utility reuses the connection to RES for all remote task executions on
that host, so the number of privileged ports is only a limitation on the number
of remote hosts that can be used by a single application, not on the number of
remote tasks. Programs using LSLIB can specify the number of privileged ports
to be created at initialization time.

Identification daemon (identd)
LSF also supports authentication using the RFC 931 or RFC 1413 identification
protocols. Under these protocols, user commands do not need to be installed
as setuid programs owned by root. You must install the identd daemon
available in the public domain.

The RFC 1413 and RFC 931 protocols use an identification daemon running on
each client host. RFC 1413 is a more recent standard than RFC 931. LSF is
compatible with both. Using an identification daemon incurs more overhead,
but removes the need for LSF applications to allocate privileged ports.

You should use identification daemons if your site cannot install programs
owned by root with the setuid bit set, or if you have software developers
creating new load-sharing applications in C using LSLIB.

An implementation of RFC 931 or RFC 1413 such as pidentd or authd can be
obtained from the public domain. If you have Internet FTP access, a good
source for identification daemons is host ftp.lysator.liu.se, directory
pub/ident/servers.

How LSF determines the user authentication method
LSF uses the LSF_AUTH parameter in the lsf.conf file to determine which
type of authentication to use.

External user authentication is used if LSF_AUTH is defined to be eauth. This
is the default. In this case, LSF will run the external executable eauth in the
LSF_SERVERDIR directory to perform the authentication.
Administering Platform LSF

Chapter 37
Authentication
If a load-sharing application is not setuid to root, library functions use a non-
privileged port. If the LSF_AUTH parameter is not set in lsf.conf, the
connection is rejected. If LSF_AUTH is defined to be ident, RES on the remote
host, or mbatchd in the case of a bsub command, contacts the identification
daemon on the local host to verify the user ID. The identification daemon
looks directly into the kernel to make sure the network port number being
used is attached to a program being run by the specified user.

LSF allows both the setuid and identification daemon methods to be in effect
simultaneously. If the effective user ID of a load-sharing application is root,
then a privileged port number is used in contacting RES. RES always accepts
requests from a privileged port on a known host even if LSF_AUTH is defined
to be ident. If the effective user ID of the application is not root, and the
LSF_AUTH parameter is defined to be ident, then a normal port number is
used and RES tries to contact the identification daemon to verify the user’s
identity.

setuid permission on LSF administration commands
The LSF administration commands (lsadmin and badmin, etc.) are installed
setuid by default. All other LSF commands except the administration
commands can be run without setuid permission if an identification daemon
is used.

If your file server does not permit setuid permission, you should install
LSF_BINDIR on a file system that does allow setuid.

Security of LSF authentication
All authentication methods supported by LSF depend on the security of the
root account on all hosts in the cluster. If a user can get access to the root
account, they can subvert any of the authentication methods. There are no
known security holes that allow a non-root user to execute programs with
another user’s permission.

Some people have particular concerns about security schemes involving RFC
1413 identification daemons. When a request is coming from an unknown
host, there is no way to know whether the identification daemon on that host
is correctly identifying the originating user.

LSF only accepts job execution requests that originate from hosts within the
LSF cluster, so the identification daemon can be trusted.

The system environment variable LSF_ENVDIR is used by LSF to obtain the
location of lsf.conf, which points to the LSF configuration files. Any user
who can modify system environment variables can modify LSF_ENVDIR to
point to their own configuration and start up programs under the lsfadmin
account.

All external binaries invoked by the LSF daemons (such as esub, eexec, elim,
eauth, and queue level pre- and post-execution commands) are run under the
lsfadmin account.
Administering Platform LSF 439

About User Authentication

440
UNIX By default, external authentication is installed on UNIX. If you use the
identification protocol (identd) for authentication, LSF uses a port in the UNIX
privileged port range, so it is not possible for an ordinary user to start a hacked
identification daemon on an LSF host.

On UNIX, this means that authentication is done using privileged ports and
binaries that need to be authenticated (for example, bsub) are installed setuid
to root.

Windows By default, external authentication is installed on Windows. You may disable
external authentication by disabling the LSF_AUTH parameter in the lsf.conf
file.

On Windows, privileged ports authentication does not provide any security
because Windows does not have the concept of setuid binaries and does not
restrict which binaries can use privileged ports. A security risk exists in that a
user can discover the format of LSF protocol messages and write a program
that tries to communicate with an LSF server. The LSF default external
authentication should be used where this security risk is a concern.

Only the parameters LSF_STARTUP_USERS and LSF_STARTUP_PATH are used
on Windows. You should ensure that only authorized users modify the files
under the %SYSTEMROOT% directory.

Once the LSF services on Windows are started, they will only accept requests
from LSF cluster administrators. To allow other users to interact with the LSF
services, you must set up the lsf.sudoers file under the directory specified
by the %SYSTEMROOT% environment variable.

See the Platform LSF Reference for the format of the lsf.sudoers file.

Correcting user authentication errors
If LSF cannot verify the user’s identity, the error message User permission
denied is displayed by LSF commands.

This error has several possible causes:

◆ The LSF applications are not installed setuid.

◆ The NFS directory is mounted with the nosuid option.

◆ The identification daemon is not available on the local or submitting host.

◆ External authentication failed.

◆ You configured LSF to use ruserok() and the client host is not found in
either the /etc/hosts.equiv or the $HOME/.rhosts file on the master or
remote host.
Administering Platform LSF

Chapter 37
Authentication
Password problem notification on Windows
A Windows job may not be able to run because of a problem with the user's
LSF password (entered and updated using lspasswd). If LSF does not
recognize the password, the problem could be:

◆ The user never gave their Windows user account password to LSF
(lspasswd).

◆ The user changed their password in Windows but did not update LSF
(lspasswd).

If a job is in PEND state and LSF cannot run it because of a password problem,
by default, LSF puts the job into USUSP and then notifies the user via email.
The user can fix the problem, and then use bresume to release the job from
USUSP.
Administering Platform LSF 441

About Host Authentication

442
About Host Authentication
When a batch job or a remote execution request is received, LSF first
determines the user’s identity. Once the user’s identity is known, LSF decides
whether it can trust the host from which the request comes from.

Trust LSF host
LSF normally allows remote execution by all users except root, from all hosts
in the LSF cluster; LSF trusts all hosts that are configured into your cluster. The
reason behind this is that by configuring an LSF cluster you are turning a
network of machines into a single computer. Users must have valid accounts
on all hosts. This allows any user to run a job with their own permission on
any host in the cluster. Remote execution requests and batch job submissions
are rejected if they come from a host not in the LSF cluster.

A site can configure an external executable to perform additional user or host
authorization. By defining LSF_AUTH to be eauth in lsf.conf, the LSF
daemon will invoke eauth -s when it receives a request that needs
authentication and authorization. For example, eauth can check if the client
user is on a list of authorized users or if a host has the necessary privilege to
be trusted.

/etc/hosts.equiv (UNIX)
If the LSF_USE_HOSTEQUIV parameter is set in the lsf.conf file, LSF uses
the same remote execution access control mechanism as the rsh command.
When a job is run on a remote host, the user name and originating host are
checked using the ruserok(3) function on the remote host.

The ruserok(3) function checks in the /etc/hosts.equiv file and the user’s
$HOME/.rhosts file to decide if the user has permission to execute jobs.

The name of the local host should be included in this list. RES calls ruserok()
for connections from the local host. mbatchd calls ruserok() on the master
host, so every LSF user must have a valid account and remote execution
permission on the master host.

The disadvantage of using the /etc/hosts.equiv and $HOME/.rhosts files
is that these files also grant permission to use the rlogin and rsh commands
without giving a password. Such access is restricted by security policies at
some sites.

For more information
See the hosts.equiv(5) and ruserok(3) man pages for details on the format
of the files and the access checks performed.
Administering Platform LSF

Chapter 37
Authentication
About Daemon Authentication
The LSF Kerberos integration provides an eauth that takes advantage of the
enhanced eauth behaviour described in this section. See the integration
package for more information, including complete installation and
configuration of that eauth.

Daemon authentication
By default, LSF calls the eauth program only for user authentication
(authenticate LSF user requests to either RES or mbatchd).

LSF can also authenticate the following communications between daemons,
using the same eauth program:

◆ mbatchd requests to sbatchd

◆ sbatchd updates to mbatchd

◆ PAM to sbatchd interactions

◆ mbatchd to mbatchd (in an LSF MultiCluster environment)

The eauth can use these environment variables to provide context:

◆ LSF_EAUTH_CLIENT - sender of the authentication request

◆ LSF_EAUTH_SERVER - receiver of the authentication request

Configuring daemon authentication
Set LSF_AUTH_DAEMONS in lsf.conf. For example,

LSF_AUTH_DAEMONS=1
Administering Platform LSF 443

LSF in Multiple Authentication Environments

444
LSF in Multiple Authentication Environments
In some environments, such as a UNIX system or a Windows domain, you can
have one user account that works on all hosts. However, when you build an
LSF cluster in a heterogeneous enviroment, you can have a different user
account on each system, and each system does its own password
authentication.

This means that LSF cannot always use the submission account to run a job,
because the job will fail if the execution host cannot validate the password of
the account you used on the submission host.

In an environment of multiple authentication systems, user mapping
determines which account LSF uses when it runs your job. User mapping can
be defined all of the following ways:

◆ For clusters containing Windows hosts, LSF default user mapping
(LSF_USER_DOMAIN in lsf.conf) might be enabled. This should be
configured only once, when you install and set up LSF.

◆ User mapping at the user level (lsb.hosts) is configurable by the user.

◆ User mapping at the system level (lsb.users) is configurable by the
administrator.
Administering Platform LSF

Chapter 37
Authentication
User Account Mapping
By default, LSF assumes uniform user accounts throughout the cluster. This
means that jobs will be executed on any host with exactly the same user ID
and user login name.

LSF allows user account mapping across a non-uniform user name space.

The LSF administrator can disable user account mapping.

For information about account mapping between clusters in a MultiCluster
environment, see the Platform MultiCluster Guide.

Configuring user-level account mapping (.lsfhosts)
1 Set up a hidden .lsfhosts file in your home directory that tells what

accounts to use when you send jobs to remote hosts and which remote
users are allowed to run jobs under your local account. This is similar to
the .rhosts file used by rcp, rlogin and rsh.

2 Specify each line in the form:
host_name user_name [send|recv]

where send indicates that if you send a job to host host_name, then the
account user_name should be used, and recv indicates that your local
account is enabled to run jobs from user user_name on host host_name. If
neither send nor recv are specified, your local account can both send jobs
to and receive jobs from the account user_name on host_name. Lines
beginning with ‘#’ are ignored. A plus sign (+) in the host_name or
user_name field indicates any LSF host or user respectively.

3 Set the permission on your .lsfhosts file to read/write only by the
owner. Otherwise, your .lsfhosts file is silently ignored

MultiCluster The cluster name can be substituted for host_name in a MultiCluster
environment. For more information, see the Platform MultiCluster Guide.

Example 1 For example, assume that hostB and hostA in your cluster do not share the
same user name/user ID space. You have an account user1 on host hostB
and an account ruser_1 on host hostA. You want to be able to submit jobs
from hostB to run on hostA. Set up your .lsfhosts files as follows:

On hostB:

% cat ~user1/.lsfhosts
hostA ruser_1 send

On hostA:

% cat ~ruser_1/.lsfhosts
hostB user1 recv
Administering Platform LSF 445

User Account Mapping

446
Example 2 As another example, assume you have account user1 on host hostB and want
to use the lsfguest account when sending jobs to be run on host hostA. The
lsfguest account is intended to be used by any user submitting jobs from any
LSF host. Set up your .lsfhosts files as follows:

On hostB:

% cat ~user1/.lsfhosts
hostA lsfguest send

On hostA:

% cat ~lsfguest/.lsfhosts
+ + recv
Administering Platform LSF

C H A P T E R

38
Job Email, and Job File Spooling

Contents ◆ “Mail Notification When a Job Starts” on page 448

◆ “File Spooling for Job Input, Output, and Command Files” on page 451
Administering Platform LSF 447

Mail Notification When a Job Starts

448
Mail Notification When a Job Starts
When a batch job completes or exits, LSF by default sends a job report by
electronic mail to the submitting user account. The report includes the
following information:

◆ Standard output (stdout) of the job

◆ Standard error (stderr) of the job

◆ LSF job information such as CPU, process and memory usage

The output from stdout and stderr are merged together in the order printed,
as if the job was run interactively. The default standard input (stdin) file is the
null device. The null device on UNIX is /dev/null.

bsub mail options

-B Sends email to the job submitter when the job is dispatched and begins
running. The default destination for email is defined by LSB_MAILTO in
lsf.conf.

-u user_name If you want mail sent to another user, use the -u user_name option to the bsub
command. Mail associated with the job will be sent to the named user instead
of to the submitting user account.

-N If you want to separate the job report information from the job output, use the
-N option to specify that the job report information should be sent by email.

-o and -e Options The output file created by the -o option to the bsub command normally
contains job report information as well as the job output. This information
includes the submitting user and host, the execution host, the CPU time (user
plus system time) used by the job, and the exit status.

If you specify a -o output_file option and do not specify a -e error_file option,
the standard output and standard error are merged and stored in output_file.
You can also specify the standard input file if the job needs to read input from
stdin.

The output files specified by the -o and -e options are created on the
execution host. See “Remote File Access” on page 458 for an example of
copying the output file back to the submission host if the job executes on a file
system that is not shared between the submission and execution hosts.

Disabling job
email

If you do not want job output to be sent by mail, specify stdout and stderr
as the files for -o and -e. For example, the following command directs stderr
and stdout to file named /tmp/job_out, and no email is sent.

bsub -o /tmp/job_out sleep 5
Administering Platform LSF

Chapter 38
Job Email, and Job File Spooling
On UNIX, If you want no job output or email at all, specify /dev/null as the
output file:

bsub -o /dev/null sleep 5

Example The following example submits myjob to the night queue:

% bsub -q night -i job_in -o job_out -e job_err myjob

The job reads its input from file job_in. Standard output is stored in file
job_out, and standard error is stored in file job_err.

Size of job email
Some batch jobs can create large amounts of output. To prevent large job
output files from interfering with your mail system, you can use the
LSB_MAILSIZE_LIMIT parameter in lsf.conf to limit the size of the email
containing the job output information.

By default, LSB_MAILSIZE_LIMIT is not enabled—no limit is set on size of
batch job output email.

If the size of the job output email exceeds LSB_MAILSIZE_LIMIT, the output is
saved to a file under JOB_SPOOL_DIR, or the default job output directory if
JOB_SPOOL_DIR is undefined. The email informs users where the job output
is located.

If the -o option of bsub is used, the size of the job output is not checked
against LSB_MAILSIZE_LIMIT.

LSB_MAILSIZE
environment

variable

LSF sets LSB_MAILSIZE to the approximate size in KB of the email containing
job output information, allowing a custom mail program to intercept output
that is larger than desired. If you use the LSB_MAILPROG parameter to specify
the custom mail program that can make use of the LSB_MAILSIZE environment
variable, it is not necessary to configure LSB_MAILSIZE_LIMIT.

LSB_MAILSIZE is not recognized by the LSF default mail program. To prevent
large job output files from interfering with your mail system, use
LSB_MAILSIZE_LIMIT to explicitly set the maximum size in KB of the email
containing the job information.

LSB_MAILSIZE
values

The LSB_MAILSIZE environment variable can take the following values:

◆ A positive integer

If the output is being sent by email, LSB_MAILSIZE is set to the estimated
mail size in KB.

◆ -1

If the output fails or cannot be read, LSB_MAILSIZE is set to -1 and the
output is sent by email using LSB_MAILPROG if specified in lsf.conf.

◆ Undefined
Administering Platform LSF 449

Mail Notification When a Job Starts

450
If you use the -o or -e options of bsub, the output is redirected to an
output file. Because the output is not sent by email in this case,
LSB_MAILSIZE is not used and LSB_MAILPROG is not called.

If the -N option is used with the -o option of bsub, LSB_MAILSIZE is not
set.

Directory for job output
The -o and -e options of the bsub and bmod commands can accept a file name
or directory path. LSF creates the standard output and standard error files in
this directory. If you specify only a directory path, job output and error files
are created with unique names based on the job ID so that you can use a single
directory for all job output, rather than having to create separate output
directories for each job.

Specifying a directory for job output
Make the final character in the path a slash (/) on UNIX, or a double backslash
(\\) on Windows. If you omit the trailing slash or backslash characters, LSF
treats the specification as a file name.

If the specified directory does not exist, LSF creates it on the execution host
when it creates the standard error and standard output files.

By default, the output files have the following format:

Standard output output_directory/job_ID.out

Standard error error_directory/job_ID.err

Example The following command creates the directory /usr/share/lsf_out if it does
not exist, and creates the standard output file job_ID.out in this directory
when the job completes:

% bsub -o /usr/share/lsf_out/ myjob

The following command creates the directory C:\lsf\work\lsf_err if it
does not exist, and creates the standard error file job_ID.err in this directory
when the job completes:

% bsub -e C:\lsf\work\lsf_err\\ myjob

For more information
See the Platform LSF Reference for information about the LSB_MAILSIZE
environment variable and the LSB_MAILTO, LSB_MAILSIZE_LIMIT, and
JOB_SPOOL_DIR parameters in lsf.conf.
Administering Platform LSF

Chapter 38
Job Email, and Job File Spooling
File Spooling for Job Input, Output, and Command
Files

About job file spooling
LSF enables spooling of job input, output, and command files by creating
directories and files for buffering input and output for a job. LSF removes these
files when the job completes.

You can make use of file spooling when submitting jobs with the -is and -Zs
options to bsub. Use similar options in bmod to modify or cancel the spool file
specification for the job. Use the file spooling options if you need to modify or
remove the original job input or command files before the job completes.
Removing or modifying the original input file does not affect the submitted job.

File spooling is not supported across MultiClusters.

Specifying job input files
Use the bsub -i input_file and bsub -is input_file commands to get
the standard input for the job from the file path name specified by input_file.
The path can be an absolute path or a relative path to the current working
directory. The input file can be any type of file, though it is typically a shell
script text file.

LSF first checks the execution host to see if the input file exists. If the file exists
on the execution host, LSF uses this file as the input file for the job.

If the file does not exist on the execution host, LSF attempts to copy the file
from the submission host to the execution host. For the file copy to be
successful, you must allow remote copy (rcp) access, or you must submit the
job from a server host where RES is running. The file is copied from the
submission host to a temporary file in the directory specified by the
JOB_SPOOL_DIR parameter, or your $HOME/.lsbatch directory on the
execution host. LSF removes this file when the job completes.

The -is option of bsub spools the input file to the directory specified by the
JOB_SPOOL_DIR parameter in lsb.params, and uses the spooled file as the
input file for the job.

Use the bsub -is command if you need to change the original input file
before the job completes. Removing or modifying the original input file does
not affect the submitted job.

Unless you use -is, you can use the special characters %J and %I in the name
of the input file. %J is replaced by the job ID. %I is replaced by the index of
the job in the array, if the job is a member of an array, otherwise by 0 (zero).
The special characters %J and %I are not valid with the -is option.
Administering Platform LSF 451

File Spooling for Job Input, Output, and Command Files

452
Specifying a job command file (bsub -Zs)
Use the bsub -Zs command to spool a job command file to the directory
specified by the JOB_SPOOL_DIR parameter in lsb.params. LSF uses the
spooled file as the command file for the job.

Use the bmod -Zs command if you need to change the command file after the
job has been submitted. Changing the original input file does not affect the
submitted job. Use bmod -Zsn to cancel the last spooled command file and
use the original spooled file.

The bsub -Zs option is not supported for embedded job commands because
LSF is unable to determine the first command to be spooled in an embedded
job command.

About the job spooling directory (JOB_SPOOL_DIR)
If JOB_SPOOL_DIR is specified in lsb.params:

◆ The job input file for bsub -is is spooled to
JOB_SPOOL_DIR/lsf_indir. If the lsf_indir directory does not exist,
LSF creates it before spooling the file. LSF removes the spooled file when
the job completes.

◆ The job command file for bsub -Zs is spooled to
JOB_SPOOL_DIR/lsf_cmddir. If the lsf_cmddir directory does not exist,
LSF creates it before spooling the file. LSF removes the spooled file when
the job completes.

The JOB_SPOOL_DIR directory should be a shared directory accessible from
the master host and the submission and execution hosts. The directory must
be readable and writable by the job submission users.

Except for bsub -is and bsub -Zs, if JOB_SPOOL_DIR is not accessible or
does not exist, output is spooled to the default job output directory .lsbatch.

For bsub -is and bsub -Zs, JOB_SPOOL_DIR must be readable and writable
by the job submission user. If the specified directory is not accessible or does
not exist, bsub -is and bsub -Zs cannot write to the default directory and
the job will fail.

If JOB_SPOOL_DIR is not specified in lsb.params:

◆ The job input file for bsub -is is spooled to
LSB_SHAREDIR/cluster_name/lsf_indir. If the lsf_indir directory
does not exist, LSF creates it before spooling the file. LSF removes the
spooled file when the job completes.

◆ The job command file for bsub -Zs is spooled to
LSB_SHAREDIR/cluster_name/lsf_cmddir. If the lsf_cmddir
directory does not exist, LSF creates it before spooling the file. LSF removes
the spooled file when the job completes.

If you want to use job file spooling, but do not specify JOB_SPOOL_DIR, the
LSB_SHAREDIR/cluster_name directory must be readable and writable by all
the job submission users. If your site does not permit this, you must manually
Administering Platform LSF

Chapter 38
Job Email, and Job File Spooling
create lsf_indir and lsf_cmddir directories under
LSB_SHAREDIR/cluster_name that are readable and writeable by all job
submission users.

Modifying the job input file
Use the -i and -is options of bmod to specify a new job input file. The -in
and -isn options cancel the last job input file modification made with either
-i or -is.

Modifying the job command file
Use the -Z and -Zs options of bmod to modify the job command file
specification. -Z modifies a command submitted without spooling, and Zs
modifies a spooled command file. The -Zsn option of bmod cancels the last
job command file modification made with -Zs and uses the original spooled
command.

For more information
See the Platform LSF Reference for more information about the bsub and bmod
commands, the JOB_SPOOL_DIR parameter in lsb.params, and the
LSF_TMPDIR environment variable.
Administering Platform LSF 453

File Spooling for Job Input, Output, and Command Files

454
 Administering Platform LSF

C H A P T E R

39
Non-Shared File Systems

Contents ◆ “About Directories and Files” on page 456

◆ “Using LSF with Non-Shared File Systems” on page 457

◆ “Remote File Access” on page 458

◆ “File Transfer Mechanism (lsrcp)” on page 460
Administering Platform LSF 455

About Directories and Files

456
About Directories and Files
LSF is designed for networks where all hosts have shared file systems, and files
have the same names on all hosts.

LSF includes support for copying user data to the execution host before
running a batch job, and for copying results back after the job executes.

In networks where the file systems are not shared, this can be used to give
remote jobs access to local data.

Supported file systems

UNIX On UNIX systems, LSF supports the following shared file systems:

◆ Network File System (NFS)

NFS file systems can be mounted permanently or on demand using
automount.

◆ Andrew File System (AFS)

◆ Distributed File System (DCE/DFS)

Windows On Windows, directories containing LSF files can be shared among hosts from
a Windows server machine.

Non-shared directories and files
LSF is usually used in networks with shared file space. When shared file space
is not available, LSF can copy needed files to the execution host before running
the job, and copy result files back to the submission host after the job
completes. See “Remote File Access” on page 458 for more information.

Some networks do not share files between hosts. LSF can still be used on these
networks, with reduced fault tolerance. See “Using LSF with Non-Shared File
Systems” on page 457 for information about using LSF in a network without a
shared file system.
Administering Platform LSF

Chapter 39
Non-Shared File Systems
Using LSF with Non-Shared File Systems

LSF installation
To install LSF on a cluster without shared file systems, follow the complete
installation procedure on every host to install all the binaries, man pages, and
configuration files.

Configuration files
After you have installed LSF on every host, you must update the configuration
files on all hosts so that they contain the complete cluster configuration.
Configuration files must be the same on all hosts.

Master host
You must choose one host to act as the LSF master host. LSF configuration files
and working directories must be installed on this host, and the master host
must be listed first in lsf.cluster.cluster_name.

You can use the parameter LSF_MASTER_LIST in lsf.conf to define which
hosts can be considered to be elected master hosts. In some cases, this may
improve performance.

Fault tolerance
Some fault tolerance can be introduced by choosing more than one host as a
possible master host, and using NFS to mount the LSF working directory on
only these hosts. All the possible master hosts must be listed first in
lsf.cluster.cluster_name. As long as one of these hosts is available, LSF
continues to operate.
Administering Platform LSF 457

Remote File Access

458
Remote File Access

Using LSF with non-shared file space
LSF is usually used in networks with shared file space. When shared file space
is not available, use the bsub -f command to have LSF copy needed files to
the execution host before running the job, and copy result files back to the
submission host after the job completes.

LSF attempts to run a job in the directory where the bsub command was
invoked. If the execution directory is under the user’s home directory,
sbatchd looks for the path relative to the user’s home directory. This handles
some common configurations, such as cross-mounting user home directories
with the /net automount option.

If the directory is not available on the execution host, the job is run in /tmp.
Any files created by the batch job, including the standard output and error files
created by the -o and -e options to bsub, are left on the execution host.

LSF provides support for moving user data from the submission host to the
execution host before executing a batch job, and from the execution host back
to the submitting host after the job completes. The file operations are specified
with the -f option to bsub.

LSF uses the lsrcp command to transfer files. lsrcp contacts RES on the
remote host to perform file transfer. If RES is not available, the UNIX rcp
command is used. See “File Transfer Mechanism (lsrcp)” on page 460 for more
information.

bsub -f
The -f "[local_file operator [remote_file]]" option to the bsub
command copies a file between the submission host and the execution host.
To specify multiple files, repeat the -f option.

local_file File name on the submission host

remote_file File name on the execution host

The files local_file and remote_file can be absolute or relative file path names.
You must specifiy at least one file name. When the file remote_file is not
specified, it is assumed to be the same as local_file. Including local_file without
the operator results in a syntax error.

operator Operation to perform on the file. The operator must be surrounded by white
space.

Valid values for operator are:

> local_file on the submission host is copied to remote_file on the execution host
before job execution. remote_file is overwritten if it exists.
Administering Platform LSF

Chapter 39
Non-Shared File Systems
< remote_file on the execution host is copied to local_file on the submission host
after the job completes. local_file is overwritten if it exists.

<< remote_file is appended to local_file after the job completes. local_file is
created if it does not exist.

><, <> Equivalent to performing the > and then the < operation. The file local_file is
copied to remote_file before the job executes, and remote_file is copied back,
overwriting local_file, after the job completes. <> is the same as ><

If the submission and execution hosts have different directory structures, you
must ensure that the directory where remote_file and local_file will be placed
exists. LSF tries to change the directory to the same path name as the directory
where the bsub command was run. If this directory does not exist, the job is
run in your home directory on the execution host.

You should specify remote_file as a file name with no path when running in
non-shared file systems; this places the file in the job’s current working
directory on the execution host. This way the job will work correctly even if
the directory where the bsub command is run does not exist on the execution
host. Be careful not to overwrite an existing file in your home directory.

bsub -i
If the input file specified with bsub -i is not found on the execution host, the
file is copied from the submission host using the LSF remote file access facility
and is removed from the execution host after the job finishes.

bsub -o and bsub -e
The output files specified with the -o and -e arguments to bsub are created
on the execution host, and are not copied back to the submission host by
default. You can use the remote file access facility to copy these files back to
the submission host if they are not on a shared file system.

For example, the following command stores the job output in the job_out file
and copies the file back to the submission host:

% bsub -o job_out -f "job_out <" myjob

Example
To submit myjob to LSF, with input taken from the file /data/data3 and the
output copied back to /data/out3, run the command:

% bsub -f "/data/data3 > data3" -f "/data/out3 < out3" myjob data3 out3

To run the job batch_update, which updates the batch_data file in place,
you need to copy the file to the execution host before the job runs and copy
it back after the job completes:

% bsub -f "batch_data <>" batch_update batch_data
Administering Platform LSF 459

File Transfer Mechanism (lsrcp)

460
File Transfer Mechanism (lsrcp)
The LSF remote file access mechanism (bsub -f) uses lsrcp to process the
file transfer. The lsrcp command tries to connect to RES on the submission
host to handle the file transfer.

See “Remote File Access” on page 458 for more information about using
bsub -f.

Limitations to lsrcp
Because LSF client hosts do not run RES, jobs that are submitted from client
hosts should only specify bsub -f if rcp is allowed. You must set up the
permissions for rcp if account mapping is used.

File transfer using lscrp is not supported in the following contexts:

◆ If LSF account mapping is used; lsrcp fails when running under a different
user account

◆ LSF client hosts do not run RES, so lsrcp cannot contact RES on the
submission host

See “User Account Mapping” on page 445 for more information.

Workarounds
In these situations, use the following workarounds:

rcp on UNIX If lsrcp cannot contact RES on the submission host, it attempts to use rcp to
copy the file. You must set up the /etc/hosts.equiv or HOME/.rhosts file
in order to use rcp.

See the rcp(1) and rsh(1) man pages for more information on using the rcp
command.

Custom file
transfer

mechanism

You can replace lsrcp with your own file transfer mechanism as long as it
supports the same syntax as lsrcp. This might be done to take advantage of
a faster interconnection network, or to overcome limitations with the existing
lsrcp. sbatchd looks for the lsrcp executable in the LSF_BINDIR directory
as specified in the lsf.conf file.
Administering Platform LSF

C H A P T E R

40
Error and Event Logging

Contents ◆ “System Directories and Log Files” on page 462

◆ “Managing Error Logs” on page 464

◆ “System Event Log” on page 465

◆ “Duplicate Logging of Event Logs” on page 466
Administering Platform LSF 461

System Directories and Log Files

462
System Directories and Log Files
LSF uses directories for temporary work files, log files and transaction files and
spooling.

LSF keeps track of all jobs in the system by maintaining a transaction log in the
work subtree. The LSF log files are found in the directory
LSB_SHAREDIR/cluster_name/logdir.

The following files maintain the state of the LSF system:

lsb.events
LSF keeps track of the state of all jobs using the encrypted lsb.events file.
Each job is a transaction from job submission to job completion. LSF system
keeps track of everything associated with the job in the lsb.events file.

lsb.events.n
The events file is automatically trimmed and old job events are stored in
lsb.event.n files. When mbatchd starts, it refers only to the lsb.events file,
not the lsb.events.n files. Only the bhist command can refer to these files.

Job script files in the info directory
When a user issues a bsub command from a shell prompt, LSF collects all of
the commands issued on the bsub line and spools the data to mbatchd, which
saves the bsub command script in the info directory for use at dispatch time
or if the job is rerun. The info directory is managed by LSF and should not be
modified by anyone.

Log directory permissions and ownership
Ensure that the permissions on the LSF_LOGDIR directory to be writable by
root. The LSF administrator must own LSF_LOGDIR.

Support for UNICOS accounting
In Cray UNICOS environments, LSF writes to the Network Queuing System
(NQS) accounting data file, nqacct, on the execution host. This lets you track
LSF jobs and other jobs together, through NQS.
Administering Platform LSF

Chapter 40
Error and Event Logging
Support for IRIX Comprehensive System Accounting (CSA)
The IRIX 6.5.9 Comprehensive System Accounting facility (CSA) writes an
accounting record for each process in the pacct file, which is usually located
in the /var/adm/acct/day directory. IRIX system administrators then use the
csabuild command to organize and present the records on a job by job basis.

The LSF_ENABLE_CSA parameter in lsf.conf enables LSF to write job events
to the pacct file for processing through CSA. For LSF job accounting, records
are written to pacct at the start and end of each LSF job.

See the Platform LSF Reference for more information about the
LSF_ENABLE_CSA parameter.

See the IRIX 6.5.9 resource administration documentation for information
about CSA.
Administering Platform LSF 463

Managing Error Logs

464
Managing Error Logs
Error logs maintain important information about LSF operations. When you see
any abnormal behavior in LSF, you should first check the appropriate error logs
to find out the cause of the problem.

LSF log files grow over time. These files should occasionally be cleared, either
by hand or using automatic scripts.

Daemon error log
LSF log files are reopened each time a message is logged, so if you rename or
remove a daemon log file, the daemons will automatically create a new log file.

The LSF daemons log messages when they detect problems or unusual
situations.

The daemons can be configured to put these messages into files.

The error log file names for the LSF system daemons are:

◆ lim.log.host_name
◆ res.log.host_name
◆ pim.log.host_name
◆ sbatchd.log.host_name
◆ mbatchd.log.host_name
◆ mbschd.log.host_name

LSF daemons log error messages in different levels so that you can choose to
log all messages, or only log messages that are deemed critical. Message
logging is controlled by the parameter LSF_LOG_MASK in lsf.conf. Possible
values for this parameter can be any log priority symbol that is defined in
/usr/include/sys/syslog.h. The default value for LSF_LOG_MASK is
LOG_WARNING.

Error logging
If the optional LSF_LOGDIR parameter is defined in lsf.conf, error messages
from LSF servers are logged to files in this directory.

If LSF_LOGDIR is defined, but the daemons cannot write to files there, the
error log files are created in /tmp.

If LSF_LOGDIR is not defined, errors are logged to the system error logs
(syslog) using the LOG_DAEMON facility. syslog messages are highly
configurable, and the default configuration varies widely from system to
system. Start by looking for the file /etc/syslog.conf, and read the man
pages for syslog(3) and syslogd(1).

If the error log is managed by syslog, it is probably already being
automatically cleared.

If LSF daemons cannot find lsf.conf when they start, they will not find the
definition of LSF_LOGDIR. In this case, error messages go to syslog. If you
cannot find any error messages in the log files, they are likely in the syslog.
Administering Platform LSF

Chapter 40
Error and Event Logging
System Event Log
The LSF daemons keep an event log in the lsb.events file. The mbatchd
daemon uses this information to recover from server failures, host reboots, and
mbatchd restarts. The lsb.events file is also used by the bhist command to
display detailed information about the execution history of batch jobs, and by
the badmin command to display the operational history of hosts, queues, and
daemons.

By default, mbatchd automatically backs up and rewrites the lsb.events file
after every 1000 batch job completions. This value is controlled by the
MAX_JOB_NUM parameter in the lsb.params file. The old lsb.events file
is moved to lsb.events.1, and each old lsb.events.n file is moved to
lsb.events.n+1. LSF never deletes these files. If disk storage is a concern, the
LSF administrator should arrange to archive or remove old lsb.events.n files
periodically.

CAUTION Do not remove or modify the current lsb.events file. Removing or
modifying the lsb.events file could cause batch jobs to be lost.
Administering Platform LSF 465

Duplicate Logging of Event Logs

466
Duplicate Logging of Event Logs
To recover from server failures, host reboots, or mbatchd restarts, LSF uses
information stored in lsb.events. To improve the reliability of LSF, you can
configure LSF to maintain copies of these logs, to use as a backup.

If the host that contains the primary copy of the logs fails, LSF will continue to
operate using the duplicate logs. When the host recovers, LSF uses the
duplicate logs to update the primary copies.

How duplicate logging works
By default, the event log is located in LSB_SHAREDIR. Typically,
LSB_SHAREDIR resides on a reliable file server that also contains other critical
applications necessary for running jobs, so if that host becomes unavailable,
the subsequent failure of LSF is a secondary issue. LSB_SHAREDIR must be
accessible from all potential LSF master hosts.

When you configure duplicate logging, the duplicates are kept on the file
server, and the primary event logs are stored on the first master host. In other
words, LSB_LOCALDIR is used to store the primary copy of the batch state
information, and the contents of LSB_LOCALDIR are copied to a replica in
LSB_SHAREDIR, which resides on a central file server. This has the following
effects:

◆ creates backup copies of lsb.events

◆ reduces the load on the central file server

◆ increases the load on the LSF master host

Failure of file
server

If the file server containing LSB_SHAREDIR goes down, LSF continues to
process jobs. Client commands such as bhist, which directly read
LSB_SHAREDIR will not work.

When the file server recovers, the current log files are replicated to
LSB_SHAREDIR.

Failure of first
master host

If the first master host fails, the primary copies of the files (in LSB_LOCALDIR)
become unavailable. Then, a new master host is selected. The new master host
uses the duplicate files (in LSB_SHAREDIR) to restore its state and to log future
events. There is no duplication by the second or any subsequent LSF master
hosts.

When the first master host becomes available after a failure, it will update the
primary copies of the files (in LSB_LOCALDIR) from the duplicates (in) and
continue operations as before.

If the first master host does not recover, LSF will continue to use the files in
LSB_SHAREDIR, but there is no more duplication of the log files.
Administering Platform LSF

Chapter 40
Error and Event Logging
Simultaneous
failure of both

hosts

If the master host containing LSB_LOCALDIR and the file server containing
LSB_SHAREDIR both fail simultaneously, LSF will be unavailable.

Network
partioning

We assume that Network partitioning does not cause a cluster to split into two
independent clusters, each simultaneously running mbatchd.

This may happen given certain network topologies and failure modes. For
example, connectivity is lost between the first master, M1, and both the file
server and the secondary master, M2. Both M1 and M2 will run mbatchd
service with M1 logging events to LSB_LOCALDIR and M2 logging to
LSB_SHAREDIR. When connectivity is restored, the changes made by M2 to
LSB_SHAREDIR will be lost when M1 updates LSB_SHAREDIR from its copy in
LSB_LOCALDIR.

The archived event files are only available on LSB_LOCALDIR, so in the case
of network partitioning, commands such as bhist cannot access these files. As
a precaution, you should periodically copy the archived files from
LSB_LOCALDIR to LSB_SHAREDIR.

Automatic archiving and duplicate logging

Event logs Archived event logs, lsb.events.n, are not replicated to LSB_SHAREDIR. If
LSF starts a new event log while the file server containing LSB_SHAREDIR is
down, you might notice a gap in the historical data in LSB_SHAREDIR.

Configuring duplicate logging
To enable duplicate logging, set LSB_LOCALDIR in lsf.conf to a directory on
the first master host (the first host configured in lsf.cluster.cluster_name)
that will be used to store the primary copies of lsb.events. This directory
should only exist on the first master host.

1 Edit lsf.conf and set LSB_LOCALDIR to a local directory that exists only
on the first master host.

2 Use the commands lsadmin reconfig and badmin mbdrestart to make
the changes take effect.
Administering Platform LSF 467

Duplicate Logging of Event Logs

468
 Administering Platform LSF

C H A P T E R

41
Troubleshooting and Error

Messages

Contents ◆ “Shared File Access” on page 470

◆ “Common LSF Problems” on page 471

◆ “Error Messages” on page 476

◆ “Setting Daemon Message Log to Debug Level” on page 483

◆ “Setting Daemon Timing Levels” on page 485
Administering Platform LSF 469

Shared File Access

470
Shared File Access
A frequent problem with LSF is non-accessible files due to a non-uniform file
space. If a task is run on a remote host where a file it requires cannot be
accessed using the same name, an error results. Almost all interactive LSF
commands fail if the user’s current working directory cannot be found on the
remote host.

Shared files on UNIX
If you are running NFS, rearranging the NFS mount table may solve the
problem. If your system is running the automount server, LSF tries to map the
filenames, and in most cases it succeeds. If shared mounts are used, the
mapping may break for those files. In such cases, specific measures need to be
taken to get around it.

The automount maps must be managed through NIS. When LSF tries to map
filenames, it assumes that automounted file systems are mounted under the
/tmp_mnt directory.

Shared files on Windows
To share files among Windows machines, set up a share on the server and
access it from the client. You can access files on the share either by specifying
a UNC path (\\server\share\path) or connecting the share to a local drive
name and using a drive:\path syntax. Using UNC is recommended because
drive mappings may be different across machines, while UNC allows you to
unambiguously refer to a file on the network.

Shared files across UNIX and Windows
For file sharing across UNIX and Windows, you require a third party NFS
product on Windows to export directories from Windows to UNIX.
Administering Platform LSF

Chapter 41
Troubleshooting and Error Messages
Common LSF Problems
This section lists some other common problems with the LIM, RES, mbatchd,
sbatchd, and interactive applications.

Most problems are due to incorrect installation or configuration. Check the
error log files; often the log message points directly to the problem.

LIM dies quietly
Run the following command to check for errors in the LIM configuration files.

% lsadmin ckconfig -v

This displays most configuration errors. If this does not report any errors, check
in the LIM error log.

LIM unavailable
Sometimes the LIM is up, but executing the lsload command prints the
following error message:

Communication time out.

If the LIM has just been started, this is normal, because the LIM needs time to
get initialized by reading configuration files and contacting other LIMs.

If the LIM does not become available within one or two minutes, check the
LIM error log for the host you are working on.

When the local LIM is running but there is no master LIM in the cluster, LSF
applications display the following message:

Cannot locate master LIM now, try later.

Check the LIM error logs on the first few hosts listed in the Host section of the
lsf.cluster.cluster_name file. If LSF_MASTER_LIST is defined in
lsf.conf, check the LIM error logs on the hosts listed in this parameter
instead.

RES does not start
Check the RES error log.

UNIX If the RES is unable to read the lsf.conf file and does not know where to
write error messages, it logs errors into syslog(3).

Windows If the RES is unable to read the lsf.conf file and does not know where to
write error messages, it logs errors into C:\temp.
Administering Platform LSF 471

Common LSF Problems

472
User permission denied
If remote execution fails with the following error message, the remote host
could not securely determine the user ID of the user requesting remote
execution.

User permission denied.

Check the RES error log on the remote host; this usually contains a more
detailed error message.

If you are not using an identification daemon (LSF_AUTH is not defined in the
lsf.conf file), then all applications that do remote executions must be owned
by root with the setuid bit set. This can be done as follows.

% chmod 4755 filename

If the binaries are on an NFS-mounted file system, make sure that the file
system is not mounted with the nosuid flag.

If you are using an identification daemon (defined in the lsf.conf file by
LSF_AUTH), inetd must be configured to run the daemon. The identification
daemon must not be run directly.

If LSF_USE_HOSTEQUIV is defined in the lsf.conf file, check if
/etc/hosts.equiv or HOME/.rhosts on the destination host has the client
host name in it. Inconsistent host names in a name server with /etc/hosts
and /etc/hosts.equiv can also cause this problem.

On SGI hosts running a name server, you can try the following command to
tell the host name lookup code to search the /etc/hosts file before calling
the name server.

% setenv HOSTRESORDER "local,nis,bind"

Non-uniform file name space
A command may fail with the following error message due to a non-uniform
file name space.

chdir(...) failed: no such file or directory

You are trying to execute a command remotely, where either your current
working directory does not exist on the remote host, or your current working
directory is mapped to a different name on the remote host.

If your current working directory does not exist on a remote host, you should
not execute commands remotely on that host.

On UNIX If the directory exists, but is mapped to a different name on the remote host,
you have to create symbolic links to make them consistent.

LSF can resolve most, but not all, problems using automount. The automount
maps must be managed through NIS. Follow the instructions in your Release
Notes for obtaining technical support if you are running automount and LSF is
not able to locate directories on remote hosts.
Administering Platform LSF

Chapter 41
Troubleshooting and Error Messages
Batch daemons die quietly
First, check the sbatchd and mbatchd error logs. Try running the following
command to check the configuration.

% badmin ckconfig

This reports most errors. You should also check if there is any email in the LSF
administrator’s mailbox. If the mbatchd is running but the sbatchd dies on
some hosts, it may be because mbatchd has not been configured to use those
hosts.

See “Host not used by LSF” on page 473.

sbatchd starts but mbatchd does not
Check whether LIM is running. You can test this by running the lsid
command. If LIM is not running properly, follow the suggestions in this chapter
to fix the LIM first. It is possible that mbatchd is temporarily unavailable
because the master LIM is temporarily unknown, causing the following error
message.

sbatchd: unknown service

Check whether services are registered properly. See “Registering Service Ports”
on page 73 for information about registering LSF services.

Host not used by LSF
If you configure a list of server hosts in the Host section of the lsb.hosts file,
mbatchd allows sbatchd to run only on the hosts listed. If you try to configure
an unknown host in the HostGroup or HostPartition sections of the
lsb.hosts file, or as a HOSTS definition for a queue in the lsb.queues file,
mbatchd logs the following message.

mbatchd on host: LSB_CONFDIR/cluster/configdir/file(line #): Host
hostname is not used by lsbatch;

ignored

If you start sbatchd on a host that is not known by mbatchd, mbatchd rejects
the sbatchd. The sbatchd logs the following message and exits.

This host is not used by lsbatch system.

Both of these errors are most often caused by not running the following
commands, in order, after adding a host to the configuration.

lsadmin reconfig
badmin reconfig

You must run both of these before starting the daemons on the new host.
Administering Platform LSF 473

Common LSF Problems

474
UNKNOWN host type or model

Viewing UNKNOWN host type or model
Run lshosts. A model or type UNKNOWN indicates the host is down or the
LIM on the host is down. You need to take immediate action. For example:

% lshosts
HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES
hostA UNKNOWN Ultra2 20.2 2 256M 710M Yes ()

Fixing UNKNOWN
host type or

model

1 Start the host.

2 Run lsadmin limstartup to start up the LIMs on the host. For example:
lsadmin limstartup hostA
Starting up LIM on <hostA> done

You can specify more than one host name to start up LIM on multiple hosts.
If you do not specify a host name, LIM is started up on the host from which
the command is submitted.

On UNIX, in order to start up LIM remotely, you must be root or listed in
lsf.sudoers and be able to run the rsh command across all hosts
without entering a password. See “Prerequisites” on page 54 for more
details.

3 Wait a few seconds, then run lshosts again. You should now be able to
see a specific model or type for the host or DEFAULT. If you see DEFAULT,
you can leave it as is. When automatic detection of host type or model fails,
the type or model is set to DEFAULT. LSF will work on the host. A
DEFAULT model may be inefficient because of incorrect CPU factors. A
DEFAULT type may cause binary incompatibility because a job from a
DEFAULT host type can be migrated to another.

DEFAULT host type or model

Viewing DEFAULT
host type or

model

Run lshosts. If Model or Type are displayed as DEFAULT when you use
lshosts and automatic host model and type detection is enabled, you can
leave it as is or change it. For example:

% lshosts
HOST_NAME type model cpuf ncpus maxmem maxswp server RESOURCES
hostA DEFAULT DEFAULT 1 2 256M 710M Yes ()

If model is DEFAULT, LSF will work correctly but the host will have a CPU
factor of 1, which may not make efficient use of the host model.

If type is DEFAULT, there may be binary incompatibility. For example, there
are 2 hosts, one is Solaris, the other is HP. If both hosts are set to type
DEFAULT, it means jobs running on the Solaris host can be migrated to the HP
host and vice-versa.
Administering Platform LSF

Chapter 41
Troubleshooting and Error Messages
Fixing DEFAULT
host type

1 Run lim -t on the host whose type is DEFAULT:
% lim -t

Host Type : sun4
Host Architecture : SUNWUltra2_200_sparcv9
Matched Type : DEFAULT
Matched Architecture : SUNWUltra2_300_sparc
Matched Model : Ultra2
CPU Factor : 20.2

Note the value of Host Type and Host Architecture.

2 Edit lsf.shared.

In the HostType section, enter a new host type. Use the host type name
detected with lim -t. For example:

Begin HostType
TYPENAME
DEFAULT
CRAYJ
sun4
...

3 Save changes to lsf.shared.

4 Run lsadmin reconfig to reconfigure LIM.

Fixing DEFAULT
host model

1 Run the lim -t command on the host whose model is DEFAULT:
% lim -t

Host Type : sun4
Host Architecture : SUNWUltra2_200_sparcv9
Matched Type : DEFAULT
Matched Architecture : SUNWUltra2_300_sparc
Matched Model : DEFAULT
CPU Factor : 20.2

Note the value of Host Architecture.

2 Edit lsf.shared.

In the HostModel section, add the new model with architecture and CPU
factor. Add the host model to the end of the host model list. The limit for
host model entries is 127. Lines commented out with # are not counted as
part of the 127 line limit.

Use the architecture detected with lim -t. For example:

Begin HostModel
MODELNAME CPUFACTOR ARCHITECTURE # keyword
Ultra2 20 SUNWUltra2_200_sparcv9
End HostModel

3 Save changes to lsf.shared.

4 Run lsadmin reconfig to reconfigure LIM.
Administering Platform LSF 475

Error Messages

476
Error Messages
The following error messages are logged by the LSF daemons, or displayed by
the following commands.

lsadmin ckconfig

badmin ckconfig

General errors
The messages listed in this section may be generated by any LSF daemon.

can’t open file: error

The daemon could not open the named file for the reason given by error. This
error is usually caused by incorrect file permissions or missing files. All
directories in the path to the configuration files must have execute (x)
permission for the LSF administrator, and the actual files must have read (r)
permission. Missing files could be caused by incorrect path names in the
lsf.conf file, running LSF daemons on a host where the configuration files
have not been installed, or having a symbolic link pointing to a nonexistent
file or directory.

file(line): malloc failed

Memory allocation failed. Either the host does not have enough available
memory or swap space, or there is an internal error in the daemon. Check the
program load and available swap space on the host; if the swap space is full,
you must add more swap space or run fewer (or smaller) programs on that
host.

auth_user: getservbyname(ident/tcp) failed: error; ident must be registered in services

LSF_AUTH=ident is defined in the lsf.conf file, but the ident/tcp service
is not defined in the services database. Add ident/tcp to the services
database, or remove LSF_AUTH from the lsf.conf file and setuid root
those LSF binaries that require authentication.

auth_user: operation(<host>/<port>) failed: error

LSF_AUTH=ident is defined in the lsf.conf file, but the LSF daemon failed to
contact the identd daemon on host. Check that identd is defined in
inetd.conf and the identd daemon is running on host.

auth_user: Authentication data format error (rbuf=<data>) from <host>/<port>

auth_user: Authentication port mismatch (...) from <host>/<port>

LSF_AUTH=ident is defined in the lsf.conf file, but there is a protocol error
between LSF and the ident daemon on host. Make sure the ident daemon on
the host is configured correctly.

userok: Request from bad port (<port_number>), denied
Administering Platform LSF

Chapter 41
Troubleshooting and Error Messages
LSF_AUTH is not defined, and the LSF daemon received a request that
originates from a non-privileged port. The request is not serviced.

Set the LSF binaries to be owned by root with the setuid bit set, or define
LSF_AUTH=ident and set up an ident server on all hosts in the cluster. If the
binaries are on an NFS-mounted file system, make sure that the file system is
not mounted with the nosuid flag.

userok: Forged username suspected from <host>/<port>: <claimed_user>/<actual_user>

The service request claimed to come from user claimed_user but ident
authentication returned that the user was actually actual_user. The request was
not serviced.

userok: ruserok(<host>,<uid>) failed

LSF_USE_HOSTEQUIV is defined in the lsf.conf file, but host has not been
set up as an equivalent host (see /etc/host.equiv), and user uid has not set
up a .rhosts file.

init_AcceptSock: RES service(res) not registered, exiting

init_AcceptSock: res/tcp: unknown service, exiting

initSock: LIM service not registered.

initSock: Service lim/udp is unknown. Read LSF Guide for help

get_ports: <serv> service not registered

The LSF services are not registered. See “Registering Service Ports” on page 73
for information about configuring LSF services.

init_AcceptSock: Can’t bind daemon socket to port <port>: error, exiting

init_ServSock: Could not bind socket to port <port>: error

These error messages can occur if you try to start a second LSF daemon (for
example, RES is already running, and you execute RES again). If this is the
case, and you want to start the new daemon, kill the running daemon or use
the lsadmin or badmin commands to shut down or restart the daemon.

Configuration errors
The messages listed in this section are caused by problems in the LSF
configuration files. General errors are listed first, and then errors from specific
files.

file(line): Section name expected after Begin; ignoring section

file(line): Invalid section name name; ignoring section

The keyword begin at the specified line is not followed by a section name, or
is followed by an unrecognized section name.

file(line): section section: Premature EOF
Administering Platform LSF 477

Error Messages

478
The end of file was reached before reading the end section line for the
named section.

file(line): keyword line format error for section section; Ignore this section

The first line of the section should contain a list of keywords. This error is
printed when the keyword line is incorrect or contains an unrecognized
keyword.

file(line): values do not match keys for section section; Ignoring line

The number of fields on a line in a configuration section does not match the
number of keywords. This may be caused by not putting () in a column to
represent the default value.

file: HostModel section missing or invalid

file: Resource section missing or invalid

file: HostType section missing or invalid

The HostModel, Resource, or HostType section in the lsf.shared file is
either missing or contains an unrecoverable error.

file(line): Name name reserved or previously defined. Ignoring index

The name assigned to an external load index must not be the same as any
built-in or previously defined resource or load index.

file(line): Duplicate clustername name in section cluster. Ignoring current line

A cluster name is defined twice in the same lsf.shared file. The second
definition is ignored.

file(line): Bad cpuFactor for host model model. Ignoring line

The CPU factor declared for the named host model in the lsf.shared file is
not a valid number.

file(line): Too many host models, ignoring model name

You can declare a maximum of 127 host models in the lsf.shared file.

file(line): Resource name name too long in section resource. Should be less than 40
characters. Ignoring line

The maximum length of a resource name is 39 characters. Choose a shorter
name for the resource.

file(line): Resource name name reserved or previously defined. Ignoring line.

You have attempted to define a resource name that is reserved by LSF or
already defined in the lsf.shared file. Choose another name for the resource.

file(line): illegal character in resource name: name, section resource. Line ignored.

Resource names must begin with a letter in the set [a-zA-Z], followed by letters,
digits or underscores [a-zA-Z0-9_].
Administering Platform LSF

Chapter 41
Troubleshooting and Error Messages
LIM messages
The following messages are logged by the LIM:

main: LIM cannot run without licenses, exiting

The LSF software license key is not found or has expired. Check that FLEXlm
is set up correctly, or contact your LSF technical support.

main: Received request from unlicensed host <host>/<port>

LIM refuses to service requests from hosts that do not have licenses. Either your
LSF license has expired, or you have configured LSF on more hosts than your
license key allows.

initLicense: Trying to get license for LIM from source <LSF_CONFDIR/license.dat>

getLicense: Can’t get software license for LIM from license file
<LSF_CONFDIR/license.dat>: feature not yet available.

Your LSF license is not yet valid. Check whether the system clock is correct.

findHostbyAddr/<proc>: Host <host>/<port> is unknown by <myhostname>

function: Gethostbyaddr_(<host>/<port>) failed: error

main: Request from unknown host <host>/<port>: error

function: Received request from non-LSF host <host>/<port>

The daemon does not recognize host. The request is not serviced. These
messages can occur if host was added to the configuration files, but not all the
daemons have been reconfigured to read the new information. If the problem
still occurs after reconfiguring all the daemons, check whether the host is a
multi-addressed host.

See “Host Naming” on page 75 for information about working with multi-
addressed hosts.

rcvLoadVector: Sender (<host>/<port>) may have different config?

MasterRegister: Sender (host) may have different config?

LIM detected inconsistent configuration information with the sending LIM. Run
the following command so that all the LIMs have the same configuration
information.

% lsadmin reconfig

Note any hosts that failed to be contacted.

rcvLoadVector: Got load from client-only host <host>/<port>. Kill LIM on <host>/<port>

A LIM is running on a client host. Run the following command, or go to the
client host and kill the LIM daemon.

% lsadmin limshutdown host

saveIndx: Unknown index name <name> from ELIM
Administering Platform LSF 479

Error Messages

480
LIM received an external load index name that is not defined in the
lsf.shared file. If name is defined in lsf.shared, reconfigure the LIM.
Otherwise, add name to the lsf.shared file and reconfigure all the LIMs.

saveIndx: ELIM over-riding value of index <name>

This is a warning message. The ELIM sent a value for one of the built-in index
names. LIM uses the value from ELIM in place of the value obtained from the
kernel.

getusr: Protocol error numIndx not read (cc=num): error

getusr: Protocol error on index number (cc=num): error

Protocol error between ELIM and LIM.

RES messages
These messages are logged by the RES.

doacceptconn: getpwnam(<username>@<host>/<port>) failed: error

doacceptconn: User <username> has uid <uid1> on client host <host>/<port>, uid <uid2> on
RES host; assume bad user

authRequest: username/uid <userName>/<uid>@<host>/<port> does not exist

authRequest: Submitter’s name <clname>@<clhost> is different from name <lname> on this
host

RES assumes that a user has the same userID and username on all the LSF
hosts. These messages occur if this assumption is violated. If the user is
allowed to use LSF for interactive remote execution, make sure the user’s
account has the same userID and username on all LSF hosts.

doacceptconn: root remote execution permission denied

authRequest: root job submission rejected

Root tried to execute or submit a job but LSF_ROOT_REX is not defined in the
lsf.conf file.

resControl: operation permission denied, uid = <uid>

The user with user ID uid is not allowed to make RES control requests. Only
the LSF manager, or root if LSF_ROOT_REX is defined in lsf.conf, can make
RES control requests.

resControl: access(respath, X_OK): error

The RES received a reboot request, but failed to find the file respath to re-
execute itself. Make sure respath contains the RES binary, and it has
execution permission.
Administering Platform LSF

Chapter 41
Troubleshooting and Error Messages
mbatchd and sbatchd messages
The following messages are logged by the mbatchd and sbatchd daemons:

renewJob: Job <jobId>: rename(<from>,<to>) failed: error

mbatchd failed in trying to re-submit a rerunnable job. Check that the file from
exists and that the LSF administrator can rename the file. If from is in an AFS
directory, check that the LSF administrator’s token processing is properly setup.

See the document “Installing LSF on AFS” on the Platform Web site for more
information about installing on AFS.

logJobInfo_: fopen(<logdir/info/jobfile>) failed: error

logJobInfo_: write <logdir/info/jobfile> <data> failed: error

logJobInfo_: seek <logdir/info/jobfile> failed: error

logJobInfo_: write <logdir/info/jobfile> xdrpos <pos> failed: error

logJobInfo_: write <logdir/info/jobfile> xdr buf len <len> failed: error

logJobInfo_: close(<logdir/info/jobfile>) failed: error

rmLogJobInfo: Job <jobId>: can’t unlink(<logdir/info/jobfile>): error

rmLogJobInfo_: Job <jobId>: can’t stat(<logdir/info/jobfile>): error

readLogJobInfo: Job <jobId> can’t open(<logdir/info/jobfile>): error

start_job: Job <jobId>: readLogJobInfo failed: error

readLogJobInfo: Job <jobId>: can’t read(<logdir/info/jobfile>) size size: error

initLog: mkdir(<logdir/info>) failed: error

<fname>: fopen(<logdir/file> failed: error

getElogLock: Can’t open existing lock file <logdir/file>: error

getElogLock: Error in opening lock file <logdir/file>: error

releaseElogLock: unlink(<logdir/lockfile>) failed: error

touchElogLock: Failed to open lock file <logdir/file>: error

touchElogLock: close <logdir/file> failed: error

mbatchd failed to create, remove, read, or write the log directory or a file in
the log directory, for the reason given in error. Check that LSF administrator
has read, write, and execute permissions on the logdir directory.

If logdir is on AFS, check that the instructions in the document “Installing LSF
on AFS” on the Platform Web site have been followed. Use the fs ls
command to verify that the LSF administrator owns logdir and that the
directory has the correct acl.
Administering Platform LSF 481

http://www.platform.com/services/support/docs/lsfdoc42/pdf/spec_env/lsf_afs.pdf
http://www.platform.com/services/support/docs/lsfdoc42/pdf/spec_env/lsf_afs.pdf
http://www.platform.com/services/support/docs/lsfdoc42/pdf/spec_env/lsf_afs.pdf

Error Messages

482
replay_newjob: File <logfile> at line <line>: Queue <queue> not found, saving to queue
<lost_and_found>

replay_switchjob: File <logfile> at line <line>: Destination queue <queue> not found,
switching to queue <lost_and_found>

When mbatchd was reconfigured, jobs were found in queue but that queue is
no longer in the configuration.

replay_startjob: JobId <jobId>: exec host <host> not found, saving to host
<lost_and_found>

When mbatchd was reconfigured, the event log contained jobs dispatched to
host, but that host is no longer configured to be used by LSF.

do_restartReq: Failed to get hData of host <host_name>/<host_addr>

mbatchd received a request from sbatchd on host host_name, but that host is
not known to mbatchd. Either the configuration file has been changed but
mbatchd has not been reconfigured to pick up the new configuration, or
host_name is a client host but the sbatchd daemon is running on that host.
Run the following command to reconfigure the mbatchd or kill the sbatchd
daemon on host_name.

% badmin reconfig
Administering Platform LSF

Chapter 41
Troubleshooting and Error Messages
Setting Daemon Message Log to Debug Level
The message log level for LSF daemons is set in lsf.conf with the parameter
LSF_LOG_MASK. To include debugging messages, set LSF_LOG_MASK to one
of:

◆ LOG_DEBUG

◆ LOG_DEBUG1

◆ LOG_DEBUG2

◆ LOG_DEBUG3

By default, LSF_LOG_MASK=LOG_WARNING and these debugging messages
are not displayed.

The location of log files is specified with the parameter LSF_LOGDIR in
lsf.conf.

You can use the lsadmin and badmin commands to temporarily change the
class, log file, or message log level for specific daemons such as LIM, RES,
mbatchd and sbatchd without changing lsf.conf.

How the message
log level takes

effect

The message log level you set will only be in effect from the time you set it until you
turn it off or the daemon stops running, whichever is sooner. If the daemon is
restarted, its message log level is reset back to the value of LSF_LOG_MASK and the
log file is stored in the directory specified by LSF_LOGDIR.

Limitations
When debug or timing level is set for RES with lsadmin resdebug, or
lsadmin restime, the debug level only affects root RES. The root RES is the
RES that runs under the root user ID.

Application RESs always use lsf.conf to set the debug environment.
Application RESs are the RESs that have been created by sbatchd to service
jobs and run under the ID of the user who submitted the job.

This means that any RES that has been launched automatically by the LSF
system will not be affected by temporary debug or timing settings. The
application RES will retain settings specified in lsf.conf.

Debug commands for daemons
The following commands set temporary message log level options for LIM,
RES, mbatchd and sbatchd.

For a detailed description of the syntax, see the lsadmin and badmin online
man pages or the Platform LSF Reference.

lsadmin limdebug [-c class_name] [-l debug_level] [-f logfile_name] [-o] [host_name]
lsadmin resdebug [-c class_name] [-l debug_level] [-f logfile_name] [-o] [host_name]
badmin mbddebug [-c class_name] [-l debug_level] [-f logfile_name] [-o]
badmin sbddebug [-c class_name] [-l debug_level] [-f logfile_name] [-o] [host_name]
Administering Platform LSF 483

Setting Daemon Message Log to Debug Level

484
Examples
◆ % lsadmin limdebug -c "LC_MULTI LC_PIM" -f myfile hostA

hostB

Log additional messages for the LIM daemon running on hostA and hostB,
related to MultiCluster and PIM. Create log files in the LSF_LOGDIR
directory with the name myfile.lim.log.hostA, and
myfile.lim.log.hostB. The debug level is the default value,
LOG_DEBUG level in parameter LSF_LOG_MASK.

◆ % lsadmin limdebug -o hostA hostB

Turn off temporary debug settings for LIM on hostA and hostB and reset
them to the daemon starting state. The message log level is reset back to
the value of LSF_LOG_MASK and classes are reset to the value of
LSF_DEBUG_RES, LSF_DEBUG_LIM, LSB_DEBUG_MBD,
LSB_DEBUG_SBD. The log file is reset to the LSF system log file in the
directory specified by LSF_LOGDIR in the format
daemon_name.log.host_name.

◆ % badmin sbddebug -o

Turn off temporary debug settings for sbatchd on the local host (host from
which the command was submitted) and reset them to the daemon starting
state. The message log level is reset back to the value of LSF_LOG_MASK
and classes are reset to the value of LSF_DEBUG_RES, LSF_DEBUG_LIM,
LSB_DEBUG_MBD, LSB_DEBUG_SBD. The log file is reset to the LSF
system log file in the directory specified by LSF_LOGDIR in the format
daemon_name.log.host_name.

◆ % badmin mbddebug -l 1

Log messages for mbatchd running on the local host and set the log
message level to LOG_DEBUG1. This command must be submitted from
the host on which mbatchd is running because host_name cannot be
specified with mbddebug.

◆ % badmin sbddebug -f hostB/myfolder/myfile hostA

Log messages for sbatchd running on hostA, to the directory myfile on
the server hostB, with the file name myfile.sbatchd.log.hostA. The
debug level is the default value, LOG_DEBUG level in parameter
LSF_LOG_MASK.

◆ % lsadmin resdebug -o hostA

Turn off temporary debug settings for RES on hostA and reset them to the
daemon starting state. The message log level is reset back to the value of
LSF_LOG_MASK and classes are reset to the value of LSF_DEBUG_RES,
LSF_DEBUG_LIM, LSB_DEBUG_MBD, LSB_DEBUG_SBD. The log file is
reset to the LSF system log file in the directory specified by LSF_LOGDIR
in the format daemon_name.log.host_name.

For timing level examples, see “Setting Daemon Timing Levels” on page 485.
Administering Platform LSF

Chapter 41
Troubleshooting and Error Messages
Setting Daemon Timing Levels
The timing log level for LSF daemons is set in lsf.conf with the parameters
LSB_TIME_MBD, LSB_TIME_SBD, LSF_TIME_LIM, LSF_TIME_RES.

The location of log files is specified with the parameter LSF_LOGDIR in
lsf.conf. Timing is included in the same log files as messages.

To change the timing log level, you need to stop any running daemons, change
lsf.conf, and then restart the daemons.

It is useful to track timing to evaluate the performance of the LSF system. You
can use the lsadmin and badmin commands to temporarily change the timing
log level for specific daemons such as LIM, RES, mbatchd and sbatchd
without changing lsf.conf.

How the timing
log level takes

effect

The timing log level you set will only be in effect from the time you set it until you
turn the timing log level off or the daemon stops running, whichever is sooner. If the
daemon is restarted, its timing log level is reset back to the value of the
corresponding parameter for the daemon (LSB_TIME_MBD, LSB_TIME_SBD,
LSF_TIME_LIM, LSF_TIME_RES). Timing log messages are stored in the same file as
other log messages in the directory specified with the parameter LSF_LOGDIR in
lsf.conf.

Limitations
When debug or timing level is set for RES with lsadmin resdebug, or
lsadmin restime, the debug level only affects root RES. The root RES is the
RES that runs under the root user ID.

An application RES always uses lsf.conf to set the debug environment. An
application RES is the RES that has been created by sbatchd to service jobs
and run under the ID of the user who submitted the job.

This means that any RES that has been launched automatically by the LSF
system will not be affected by temporary debug or timing settings. The
application RES will retain settings specified in lsf.conf.

Timing level commands for daemons
The total execution time of a function in the LSF system is recorded to evaluate
response time of jobs submitted locally or remotely.

The following commands set temporary timing options for LIM, RES, mbatchd
and sbatchd.

lsadmin limtime [-l timing_level] [-f logfile_name] [-o] [host_name]
lsadmin restime [-l timing_level] [-f logfile_name] [-o] [host_name]
badmin mbdtime [-l timing_level] [-f logfile_name] [-o]
badmin sbdtime [-l timing_level] [-f logfile_name] [-o] [host_name]

For debug level examples, see “Setting Daemon Message Log to Debug Level”
on page 483.
Administering Platform LSF 485

Setting Daemon Timing Levels

486
 Administering Platform LSF

P A R T

IX
LSF Utilities

Contents ◆ Chapter 42, “Using lstcsh”

C H A P T E R

42
Using lstcsh

This chapter describes lstcsh, an extended version of the tcsh command
interpreter. The lstcsh interpreter provides transparent load sharing of user
jobs.

This chapter is not a general description of the tcsh shell. Only load sharing
features are described in detail.

Interactive tasks, including lstcsh, are not supported on Windows.

Contents ◆ “About lstcsh” on page 490

◆ “Starting lstcsh” on page 496

◆ “Using lstcsh as Your Login Shell” on page 497

◆ “Host Redirection” on page 498

◆ “Task Control” on page 499

◆ “Built-in Commands” on page 500

◆ “Writing Shell Scripts in lstcsh” on page 502
Administering Platform LSF 489

About lstcsh

490
About lstcsh
The lstcsh shell is a load-sharing version of the tcsh command interpreter.
It is compatible with csh and supports many useful extensions. csh and tcsh
users can use lstcsh to send jobs to other hosts in the cluster without needing
to learn any new commands. You can run lstcsh from the command-line, or
use the chsh command to set it as your login shell.

With lstcsh, your commands are sent transparently for execution on faster
hosts to improve response time or you can run commands on remote hosts
explicitly.

lstcsh provides a high degree of network transparency. Command lines
executed on remote hosts behave the same as they do on the local host. The
remote execution environment is designed to mirror the local one as closely
as possible by using the same values for environment variables, terminal
setup, current working directory, file creation mask, and so on. Each
modification to the local set of environment variables is automatically reflected
on remote hosts. Note that shell variables, the nice value, and resource usage
limits are not automatically propagated to remote hosts.

For more details on lstcsh, see the lstcsh(1) man page.

In this section ◆ “Task Lists” on page 491

◆ “Local and Remote Modes” on page 492

◆ “Automatic Remote Execution” on page 493
Administering Platform LSF

Chapter 42
Using lstcsh
Task Lists
LSF maintains two task lists for each user, a local list (.lsftask) and a remote
list (lsf.task). Commands in the local list must be executed locally.
Commands in the remote list can be executed remotely.

See the Platform LSF Reference for information about the .lsftask and
lsf.task files.

Changing task list membership
You can use the LSF commands lsltasks and lsrtasks to inspect and
change the memberships of the local and remote task lists.

Task lists and resource requirements
Resource requirements for specific commands can be configured using task
lists. You can optionally associate resource requirements with each command
in the remote list to help LSF find a suitable execution host for the command.

If there are multiple eligible commands on a command-line, their resource
requirements are combined for host selection.

If a command is in neither list, you can choose how lstcsh handles the
command.
Administering Platform LSF 491

Local and Remote Modes

492
Local and Remote Modes
lstcsh has two modes of operation:

◆ Local

◆ Remote

Local mode
The local mode is the default mode. In local mode, a command line is eligible
for remote execution only if all of the commands on the line are present in the
remote task list, or if the @ character is specified on the command-line to force
it to be eligible.

See “@ character” on page 498 for more details.

Local mode is conservative and can fail to take advantage of the performance
benefits and load-balancing advantages of LSF.

Remote mode
In remote mode, a command line is considered eligible for remote execution
if none of the commands on the line is in the local task list.

Remote mode is aggressive and makes more extensive use of LSF. However,
remote mode can cause inconvenience when lstcsh attempts to send host-
specific commands to other hosts.
Administering Platform LSF

Chapter 42
Using lstcsh
Automatic Remote Execution
Every time you enter a command, lstcsh looks in your task lists to determine
whether the command can be executed on a remote host and to find the
configured resource requirements for the command.

See the Platform LSF Reference for information about task lists and lsf.task
file.

If the command can be executed on a remote host, lstcsh contacts LIM to
find the best available host.

The first time a command is run on a remote host, a server shell is started on
that host. The command is sent to the server shell, and the server shell starts
the command on the remote host. All commands sent to the same host use the
same server shell, so the start-up overhead is only incurred once.

If no host is found that meets the resource requirements of your command, the
command is run on the local host.
Administering Platform LSF 493

Differences from Other Shells

494
Differences from Other Shells
When a command is running in the foreground on a remote host, all keyboard
input (type-ahead) is sent to the remote host. If the remote command does not
read the input, it is lost.

lstcsh has no way of knowing whether the remote command reads its
standard input. The only way to provide any input to the command is to send
everything available on the standard input to the remote command in case the
remote command needs it. As a result, any type-ahead entered while a remote
command is running in the foreground, and not read by the remote command,
is lost.

@ character
The @ character has a special meaning when it is preceded by white space. This
means that the @ must be escaped with a backslash \ to run commands with
arguments that start with @, like finger. This is an example of using finger
to get a list of users on another host:

% finger @other.domain

Normally the finger command attempts to contact the named host. Under
lstcsh, the @ character is interpreted as a request for remote execution, so the
shell tries to contact the RES on the host other.domain to remotely execute the
finger command. If this host is not in your LSF cluster, the command fails.
When the @ character is escaped, it is passed to finger unchanged and
finger behaves as expected.

% finger \@hostB

For more details on the @ character, see “@ character” on page 498.
Administering Platform LSF

Chapter 42
Using lstcsh
Limitations
A shell is a very complicated application by itself. lstcsh has certain
limitations:

Native language system
Native Language System is not supported. To use this feature of the tcsh, you
must compile tcsh with SHORT_STRINGS defined. This causes complications
for characters flowing across machines.

Shell variables
Shell variables are not propagated across machines. When you set a shell
variable locally, then run a command remotely, the remote shell will not see
that shell variable. Only environment variables are automatically propagated.

fg command
The fg command for remote jobs must use @, as shown by examples in “Task
Control” on page 499.

tcsh version
lstcsh is based on tcsh 6.03 (7 bit mode). It does not support the new
features of the latest tcsh.
Administering Platform LSF 495

Starting lstcsh

496
Starting lstcsh

Starting lstcsh
If you normally use some other shell, you can start lstcsh from the command-
line.

Make sure that the LSF commands are in your PATH environment variable, then
enter:

% lstcsh

If you have a .cshrc file in your home directory, lstcsh reads it to set
variables and aliases.

Exiting lstcsh
Use the exit command to get out of lstcsh.
Administering Platform LSF

Chapter 42
Using lstcsh
Using lstcsh as Your Login Shell
If your system administrator allows, you can use LSF as your login shell. The
/etc/shells file contains a list of all the shells you are allowed to use as your
login shell.

Setting your login shell

Using csh The chsh command can set your login shell to any of those shells. If the
/etc/shells file does not exist, you cannot set your login shell to lstcsh.

For example, user3 can run the command:

% chsh user3 /usr/share/lsf/bin/lstcsh

The next time user3 logs in, the login shell will be lstcsh.

Using a standard
system shell

if you cannot set your login shell using chsh, you can use one of the standard
system shells to start lstcsh when you log in.

To set up lstcsh to start when you log in:

1 Use chsh to set /bin/sh to be your login shell.

2 Edit the .profile file in your home directory to start lstcsh, as shown
below:
SHELL=/usr/share/lsf/bin/lstcsh
export SHELL
exec $SHELL -l
Administering Platform LSF 497

Host Redirection

498
Host Redirection
Host redirection overrides the task lists, so you can force commands from your
local task list to execute on a remote host or override the resource
requirements for a command.

You can explicitly specify the eligibility of a command-line for remote
execution using the @ character. It may be anywhere in the command line
except in the first position (@ as the first character on the line is used to set the
value of shell variables).

You can restrict who can use @ for host redirection in lstcsh with the
parameter LSF_SHELL_AT_USERS in lsf.conf. See the Platform LSF Reference
for more details.

Examples
% hostname @hostD
<< remote execution on hostD >>
hostD

% hostname @/type==alpha
<< remote execution on hostB >>
hostB

@ character

For ease of use, the host names and the reserved word local following @ can
all be abbreviated as long as they do not cause ambiguity.

Similarly, when specifying resource requirements following the @, it is
necessary to use / only if the first requirement characters specified are also the
first characters of a host name. You do not have to type in resource
requirements for each command line you type if you put these task names into
remote task list together with their resource requirements by running
lsrtasks.

@ @ followed by nothing means that the command line is eligible for
remote execution.

@host_name @ followed by a host name forces the command line to be executed
on that host.

@local @ followed by the reserved word local forces the command line
to be executed on the local host only.

@/res_req @ followed by / and a resource requirement string means that the
command is eligible for remote execution and that the specified
resource requirements must be used instead of those in the remote
task list.
Administering Platform LSF

Chapter 42
Using lstcsh
Task Control
Task control in lstcsh is the same as in tcsh except for remote background
tasks. lstcsh numbers shell tasks separately for each execution host.

jobs command
The output of the built-in command jobs lists background tasks together with
their execution hosts. This break of transparency is intentional to give you
more control over your background tasks.

% sleep 30 @hostD &
<< remote execution on hostD >>
[1] 27568
% sleep 40 @hostD &
<< remote execution on hostD >>
[2] 10280
% sleep 60 @hostB &
<< remote execution on hostB >>
[1] 3748
% jobs
<hostD>
[1] + Running sleep 30
[2] Running sleep 40
<hostB>
[1] + Running sleep 60

Bringing a remote background task to the foreground
To bring a remote background task to the foreground, the host name must be
specified together with @, as in the following example:

% fg %2 @hostD
<< remote execution on hostD >>
sleep 40
Administering Platform LSF 499

Built-in Commands

500
Built-in Commands
lstcsh supports two built-in commands to control load sharing, lsmode and
connect.

In this section ◆ “lsmode” on page 500

◆ “connect” on page 501

lsmode

Syntax lsmode [on|off] [local|remote] [e|-e] [v|-v] [t|-t]

Description The lsmode command reports that LSF is enabled if lstcsh was able to
contact LIM when it started up. If LSF is disabled, no load-sharing features are
available.

The lsmode command takes a number of arguments that control how lstcsh
behaves.

With no arguments, lsmode displays the current settings:

% lsmode
LSF
Copyright Platform Computing Corporation
LSF enabled, local mode, LSF on, verbose, no_eligibility_verbose, no
timing.

Options ◆ [on | off]

Turns load sharing on or off. When turned off, you can send a command
line to a remote host only if force eligibility is specified with @.

The default is on.

◆ [local | remote]

Sets lstcsh to use local or remote mode. The default is local. See “Local
and Remote Modes” on page 492 for a description of local and remote
modes.

◆ [e | -e]

Turns eligibility verbose mode on(e) or off (-e). If eligibility verbose mode
is on, lstcsh shows whether the command is eligible for remote
execution, and displays the resource requirement used if the command is
eligible. The default is off.

◆ [v | -v]

Turns task placement verbose mode on (v) or off (-v). If verbose mode is
on, lstcsh displays the name of the host on which the command is run,
if the command is not run on the local host. The default is on.

◆ [t | -t]

Turns wall clock timing on (t) or off (-t).
Administering Platform LSF

Chapter 42
Using lstcsh
If timing is on, the actual response time of the command is displayed. This
is the total elapsed time in seconds from the time you submit the command
to the time the prompt comes back.

This time includes all remote execution overhead. The csh time built-in
does not include the remote execution overhead.

This is an impartial way of comparing the response time of jobs submitted
locally or remotely, because all the load sharing overhead is included in
the displayed elapsed time.

The default is off.

connect

Syntax connect [host_name]

Description lstcsh opens a connection to a remote host when the first command is
executed remotely on that host. The same connection is used for all future
remote executions on that host.

The connect command with no argument displays connections that are
currently open.

The connect host_name command creates a connection to the named host.
By connecting to a host before any command is run, the response time is
reduced for the first remote command sent to that host.

lstcsh has a limited number of ports available to connect to other hosts. By
default each shell can only connect to 15 other hosts.

Examples % connect
CONNECTED WITH SERVER SHELL
hostA +

% connect hostB
Connected to hostB

% connect
CONNECTED WITH SERVER SHELL
hostA +
hostB -

In this example, the connect command created a connection to host hostB,
but the server shell has not started.
Administering Platform LSF 501

Writing Shell Scripts in lstcsh

502
Writing Shell Scripts in lstcsh
You should write shell scripts in /bin/sh and use the lstools commands for
load sharing. However, lstcsh can be used to write load-sharing shell scripts.

By default, an lstcsh script is executed as a normal tcsh script with load-
sharing disabled.

Running a script with load sharing enabled
The lstcsh -L option tells lstcsh that a script should be executed with load
sharing enabled, so individual commands in the script may be executed on
other hosts.

There are three different ways to run an lstcsh script with load sharing
enabled:

◆ Run lstcsh -L script_name

OR

◆ Make the script executable and put the following as the first line of the
script. By default, lstcsh is installed in LSF_BINDIR.

The following assumes you installed lstcsh in the /usr/share/lsf/bin
directory):

#!/usr/share/lsf/bin/lstcsh -L

OR

1 Start an interactive lstcsh.

2 Enable load sharing, and set to remote mode:
lsmode on remote

3 Use the source command to read the script in.
Administering Platform LSF

Index
Symbols
%I substitution string in job arrays 279
%J substitution string in job arrays 279
%USRCMD string in job starters 320
.cshrc file and lstcsh 496
.lsbatch directory 41
.rhosts file

disadvantages 442
file transfer with lsrcp 460
host authentication 442
troubleshooting 472

/etc/hosts file
example host entries 77
host naming 75
name lookup 75
troubleshooting 472

/etc/hosts.equiv file
host authentication 442
troubleshooting 472
using rcp 460

/etc/services file, adding LSF entries to 73
/etc/shells file, and lstcsh 497
/etc/syslog.conf file 464
/usr/include/sys/syslog.h file 464
@ (at sign) in lstcsh 498

A
abnormal job termination 94
access permissions for interactive tasks 364
account mapping

overview 445
user-level, configuring 445

adaptive dispatch. See chunk jobs
administrators

cluster administrator description 53
displaying queue administrators 54
primary LSF administrator 53
user account mapping 445

ADMINISTRATORS parameter in
lsf.cluster.cluster_name 53

advanced dependency conditions 238
AFS (Andrew File System), overview 456
AFS (Andrew File System) tokens, esub and eexec 326
aliases, using as host names 75
aliases, for resource names 165
allocation limits. See resource allocation limits
Andrew File System. See AFS
application-level checkpointing 253
architecture, viewing for hosts 63
arguments

passed to the LSF event program 419
passing to job arrays 280

augmentstarter job starter 322
authd daemon 438
authentication

between daemons 443
DCE client using GSSAPI 436
external authentication (eauth) 436
identification daemon (identd) 438
Kerberos 436
LSF_AUTH parameter in lsf.conf 438
LSF_EAUTH_KEY parameter in lsf.sudoers 436
LSF_EAUTH_USER parameter lsf.sudoers 437
LSF_STARTUP_PATH parameter in lsf.sudoers 440
LSF_STARTUP_USERS parameter in lsf.sudoers 440
multiple environments 444
overview 435
privileged ports (setuid) 438
RFC 1413 and RFC 931 438
security 439

authentication environments 436
automatic

checkpointing 262
job migration 265
job requeue 245
job rerun 249
queue selection 35
remote execution in lstcsh 493

automount command, NFS (Network File System) 456,
470

automount option, /net 458

B
backfill scheduling

default run limit 295
description 396

background jobs, bringing to foreground 499
badmin command

hopen 65
hrestart 54
hshutdown 54
hstartup 54
LSF event logs 465
mbdrestart 54, 58
qact 87
qclose 87
qinact 87
qopen 87
setuid permission 439

batch jobs
accessing files 456, 458
allocating processors 376
Administering Platform LSF 503

504

Index
email about jobs
disabling 448
options 448

file access 326, 458
input and output 448
killing 101
pre- and post-execution commands 310
requeue 244
rerunning and restarting 249
signalling 101

batch log files. See log files
batch queues. See queues
benchmarks for setting CPU factors 81
Berkeley Internet Name Domain (BIND), host naming 75
bhist command, LSF event logs 465
bhosts command, using 62
BIND (Berkeley Internet Name Domain), host naming 75
bmod -is 453
bmod -Zs 453
Boolean resources 116
bparams, viewing configuration parameters 48
brun, job preemption 154
brun command, forcing a job to run 99
bsub command

email job notification 448
input and output 448
remote file access 458

bsub -f 458
bsub -is 451
bsub -Zs 452
built-in

load indices, overriding 138
resources 116

busy host status
lsload command 61
status load index 120

busy thresholds, tuning 424

C
candidate master hosts, specifying 428
ceiling resource usage limit 294
ceiling run limit 294
chargeback fairshare 197
check_license script, for counted software licenses 224
checkpoint directory 258
checkpointable jobs

chunk jobs 272
description 259

checkpoints
application-level 253
automatic 262
creating custom programs 254
fault tolerance 252
kernel-level 253
load balancing 252
overview 252
periodic 261
restarting job 263

CHKPNT parameter in lsb.queues 259
chsh and lstcsh 497

chunk jobs
checkpointing 272
CHUNK_JOB_DURATION parameter in

lsb.params 269
configuring queue for 269
description 268
fairshare scheduling 273
job controls 272
killing 272
limitations on queues 270
migrating 272
modifying 272
rerunnable 272
resuming 272
submitting and controlling 271
WAIT status and pending reason 271

CHUNK_JOB_DURATION, parameter in lsb.params 269
client host, adding 69
client_addr argument to eauth 437
client_port argument to eauth 437
closed host status, bhosts command 60, 62
closed_Adm condition, output of bhosts -l 60
closed_Busy condition, output of bhosts -l 60
closed_Excl condition, output of bhosts -l 60
closed_Full condition, output of bhosts -l 60
closed_LIM condition, output of bhosts -l 60
closed_Lock condition, output of bhosts -l 60
closed_Wind condition, output of bhosts -l 60
cluster administrators

description 53
viewing 48

cluster name, viewing 48
clusters

configuration file quick reference 57
reconfiguring

commands 57
how reconfiguration affects licenses 58

viewing, information about 48
viewing information 48

command file spooling
See also job file spooling
default directory 452
description 451
JOB_SPOOL_DIR parameter in lsb.params 451

commands
built-in 500
checking configuration 148
job starters 316
post-execution. See post-execution commands
pre-execution. See pre-execution commands
running under user ID 313
using in job control actions 337

Comprehensive System Accounting (IRIX CSA),
configuring 463

configuration
adding and removing, queues 89
commands for checking 148
preselecting master hosts 428
removing, hosts 71
tuning

busy thresholds 424
Administering Platform LSF

Index
LIM policies 423
load indices 424
load thresholds 425
mbatchd on UNIX 432
run windows 423

viewing, errors 58
configuration files

location 106
non-shared file systems 457
reconfiguration quick reference 57

configuration parameters. See individual parameter
names

core file size limit 297
counted software licenses

configuring 224
description 224

CPU
factors

static resource 124
time normalization 302
tuning in lsf.shared 81

limits
per job 297
per process 297

normalization 302
run queue length, description 350
time

cumulative and decayed 179
in dynamic user priority calculation 179

time limit, job-level resource limit 297
tuning CPU factors in lsf.shared 81
utilization, ut load index 121, 350
viewing run queue length 81

cpuf static resource 124
Cray, UNICOS accounting log files 462
cross-queue fairshare 188
CSA (IRIX Comprehensive System Accounting),

configuring 463
.cshrc file and lstcsh 496
cumulative CPU time 179
custom event handlers 418
custom file transfer, configuring 460
custom resources

adding 130
configuring 130
description 128
resource types 116

D
daemons

authd 438
authentication 443
commands 54
debug commands 483
error logs 464
pidentd 438
restarting

mbatchd 56
sbatchd 55

shutting down
mbatchd 56

sbatchd 55
TCP service ports 73
ypbind 75

data segment size limit 298
DCE/DFS (Distributed File System)

credentials, esub and eexec 326
overview 456

deadline constraint scheduling
description 150
parallel jobs 402

deadlock, avoiding signal and job action 338
debug commands for daemons 483
debug level, setting temporarily 483
decayed

CPU time 179
run time 180

DEFAULT, model or type with lshosts command 474
default

input file spooling 452
job control actions 334
JOB_SPOOL_DIR 452
LSF log file location 462
LSF_LOGDIR 464
output file spooling 452
queue, viewing 35
resource usage limits 294
run limit, backfill scheduling 295
UNIX directory structure 50
Windows directory structure 52

dependency conditions. See job dependency conditions
DFS (Distributed File System). See DCE/DFS
directories

checkpoint 258
default UNIX directory structure 50
default Windows directory structure 52
log, permissions and ownership 462
.lsbatch 41
LSF_SERVERDIR, eauth executable 438
LSF_SERVERDIR, esub and eexec 327
pre-42 UNIX directory structure 51
remote access 326, 458
shared 41
user accounts 41

disks, I/O rate 122
dispatch order, fairshare 184
dispatch turn, description 37
dispatch windows

description 232
hosts 65
queues 87
tuning for LIM 423

dispatch, adaptive. See chunk jobs
DISPATCH_WINDOW, queues 87
Domain Name Service (DNS), host naming 75
done job dependency condition 236
DONE job state

description 92
post-execution commands 311

done jobs, viewing 92
duplicate event logging
Administering Platform LSF 505

506

Index
after network partitioning 467
description 466

dynamic
master host 43
reconfiguration of host hardware 434
resources 116
user priority 178

E
eauth

description 436
executable location (LSF_SERVERDIR) 438
LSF_EAUTH_KEY parameter in lsf.sudoers 436
LSF_EAUTH_USER parameter in lsf.sudoers 437
standard input and output 437

eexec script
description 326
running as non-root 332

effective run queue length
built-in resources 121
description 350
tuning LIM 426

egroup executable
external host groups 80
external user groups 109

electronic mail. See email
eligible hosts, viewing 39
ELIM (external LIM)

counted software licenses 224
custom resources 134
debugging 137

email
disabling batch job notification 448
job options 448
limiting the size of job email 449

embedded submission options for interactive jobs 355
ended job dependency condition 236
environment of a job 41
environment variables. See individual environment

variable names
equal share fairshare 198
erestart executable, application-level checkpointing 254
error logs

log directory, LSF_LOGDIR 464
log files 464
LSF daemons 464
LSF_LOG_MASK parameter 464
managing log files 464
on UNIX and Windows NT 464

errors, viewing in reconfiguration 58
/etc/hosts file

example host entries 77
host naming 75
name lookup 75
troubleshooting 472

/etc/hosts.equiv file
host authentication 442
troubleshooting 472
using rcp 460

/etc/services file, adding LSF entries to 73
/etc/syslog.conf file 464

event generation 418
event log replication. See duplicate event logging
event logs

configuring duplicate logging 467
LSF Batch log file in lsb.events file 465

Event Viewer, Windows NT 418
events

custom programs to handle 418
generated by LSF 419
logging 43

example.services file 73
examples, /etc/hosts file entries 77
exclusive jobs

description 151
requeue 247

exclusive queues 151
execution

environment 41
forcing for jobs 99
priority 124

execution host, mandatory for parallel jobs 383
exit job dependency condition 236
EXIT job state

abnormal job termination 94
pre- and post-execution commands 311

expiry time for mbatchd 432
external

job dependency condition 237
LIM. See ELIM (external LIM)
load indices, using ELIM 134
user groups, configuring 109

external authentication (eauth)
description 436
standard input and output 437

F
fairshare scheduling

across queues 188
chargeback 197
chunk jobs 273
defining policies that apply to several queues 188
description 174
equal share 198
global 197
hierarchical share tree 194
overview 173
parallel jobs 401
policies 174
priority user 198
static priority 199
viewing cross-queue fairshare information 188
viewing queue-level information 187

fault tolerance
checkpointing jobs 252
description 43
non-shared file systems 457

FCFS (first-come, first-served) scheduling 37
file access, interactive tasks 364
file preparation, job arrays 278
file sharing 41
file size usage limit 298
Administering Platform LSF

Index
file spooling. See command file spooling, job file spooling
file systems

AFS (Andrew File System) 456
DCE/DFS (Distributed File System) 456
NFS (Network File System) 456
supported by LSF 456

file transfer, lsrcp command 460
files

/etc/hosts
example host entries 77
host naming 75
name lookup 75

/etc/services, adding LSF entries to 73
copying across hosts 364
enabling utmp registration 357
hosts, configuring 76
lsb.params

CHUNK_JOB_DURATION parameter 269
JOB_ACCEPT_INTERVAL parameter 37
JOB_SCHEDULING_INTERVAL parameter 37

lsf.conf
configuring TCP service ports 73
daemon service ports 73

lsf.shared, adding a custom host types and
models 72

makefile to run parallel jobs 389
redirecting 346
redirecting stdout and stderrr 365
resolv.conf 75
spooling command and job files 355
svc.conf (name services) 75

finger command in lstcsh 494
first-come, first-served (FCFS) scheduling 37
floating software licenses

configuring dedicated queue for 226
managing with LSF 225

forcing job execution 99
free memory 122

G
gethostbyname function (host naming) 75
gid argument to eauth 437
global fairshare 197
groups

external host 80
external user groups 109
hosts 79
users 106

groups, specifying 195

H
hard resource limits, description 292
hard resource usage limits, example 294
heterogeneous environments, authentication 444
hierarchical fairshare 192
hierarchical share tree 194
historical run time 180
history, job arrays 282, 285
hname static resource 124
home directories

remote file access 459

shared 41
$HOME/.lsbatch directory 41
$HOME/.rhosts file

disadvantages 442
file transfer with lsrcp command 460
host authentication 442

hopen badmin command 65
host authentication

LSF_USE_HOSTEQUIV parameter in lsf.conf 442
overview 435

host dispatch windows 232
host entries, examples 77
host failure 44
host groups

configuring external host groups 80
defining 106
external 80
overview 106

host load levels 39
host locked software licenses 223
host model, DEFAULT 474
host model static resource 124
host models

adding custom names in lsf.shared 72
tuning CPU factors 82

host name static resource 124
host names

/etc/hosts file 75
aliases 75
matching with Internet addresses 75
resolv.conf file 75
resolver function 75
using DNS 75

host partition fairshare 185
host redirection 498
host selection 164
host status

busy 61, 120
closed 60, 62
index 120
lockU 61
lockU and lockW 121
lockW 61, 120
-ok 61, 120
ok 60, 61, 120
unavail 60, 61, 121
unlicensed 60, 61, 121
unreach 60
viewing 62

host thresholds 39
host type, DEFAULT 474
host type static resource 124
host types, adding custom names in lsf.shared 72
host-based resources 116
host-level

fairshare scheduling 185
migration threshold, configuring 265
resource information 219

HOSTRESORDER variable 472
hosts
Administering Platform LSF 507

508

Index
adding with lsfinstall 66, 67
associating resources with 131
closing 65
connecting to remote 501
controlling 65
copying files across 364
dispatch windows 65
displaying 62
file 75
finding resource 366
logging on the least loaded 366
master candidates 428
multiple network interfaces 76
official name 75
opening 65
preselecting masters for LIM 428
redirecting 498
removing 71
restricting use by queues 90
selecting for task 360
setting up 67
spanning with parallel jobs 385
specifying master candidates 428
specifying master host 467
viewing

architecture information 63
detailed information 62
eligible 39
history 64
hosts and host status 62
load by host 63, 119
load by resource 115
partition information 185
shared resources 118
status 62
status of closed servers 62
suspending conditions 307

hosts file
configuring 76
example host entries 77
host naming 75

HOSTS parameter in lsb.hosts 79
HOSTS parameter in lsb.queues 79
hosts.equiv file

host authentication 442
using rcp 460

hostsetup 67
hrestart badmin command 54
hshutdown badmin command 54
hstartup badmin command 54

I
%I substitution string in job arrays 279
identification daemon (identd) authentication 438
idle time

built-in load index 122
description 349
suspending conditions 306

if-else constructs, creating 147
index list for job arrays 276
initializing LSLIB (Load Sharing LIBrary) for privileged

ports authentication 438
input and output files

and interactive jobs 346
job arrays 278
splitting stdout and stderr 346
spooling directory 452

installation, on non-shared file systems 457
installation directories

default UNIX structure 50
pre-42 UNIX structure 51
Windows default structure 52

interactive jobs
competing for software licenses 228
configuring queues to accept 344
redirecting scripts to standard input 355
resource reservation 169
running X applications 353
scheduling policies 344
specifying embedded submission options 355
specifying job options in a file 354
specifying shell 356
splitting stdout and stderr 346
spooling job command files 355
submitting 345
submitting and redirecting streams to files 346
submitting with pseudo-terminals 346
viewing queues for 345
writing job file one line at a time 354
writing job scripts 354

interactive sessions, starting 366
interactive tasks

file access 364
running in LSF Base 363

interfaces, network 76
Internet addresses, matching with host names 75
Internet Domain Name Service (DNS), host naming 75
inter-queue priority 304
io load index 122
IRIX

Comprehensive System Accounting (CSA),
configuring 463

utmp file registration 357
it load index

automatic job suspension 305
description 122, 349
suspending conditions 306

J
%J substitution string in job arrays 279
job arrays

%I substitution string 279
%J substitution string 279
argument passing 280
controlling 284
creating 276
dependency conditions 281
file preparation 278
format 276
history 282, 285
index list 276
input and output files 278
Administering Platform LSF

Index
maximum size 277
monitoring 282, 285
overview 275
passing arguments 280
redirection of input and output 278
requeueing 285
specifying job slot limit 286
standard input and output 279
status 282, 285
submitting 276
syntax 276

job chunking. See chunk jobs
job control actions

CHKPNT 336
configuring 336
default actions 334
LS_EXEC_T 334
on Windows 335
overriding terminate interval 335
RESUME 335
SUSPEND 334
TERMINATE 335
terminating 338
using commands in 337
with lstcsh 499

job dependency conditions
advanced 238
description 236
done 236
ended 236
examples 238
exit 236
external 237
job arrays 281
job name 237
post_done 237, 311
post_err 237, 311
post-processing 311
scheduling 234
specifying 234
specifying job ID 237
started 238

job dispatch order, fairshare 184
job email

bsub options 448
disabling batch job notification 448
limiting size with LSB_MAILSIZE_LIMIT 449

job execution environment 41
job file spooling

See also command file spooling
default directory 452
description 451
JOB_SPOOL_DIR parameter in lsb.params 451

job files 36
job ladders. See batch jobs, pre-execution commands
job migration

automatic 265
checkpointable jobs 264
checkpointing 252
overview 264
requeuing jobs 265

job requeue

automatic 245
exclusive 247
reverse requeue 246
user-specified 248

job scripts
mpijob 378
writing for interactive jobs 354

job slot limits
for job arrays 286
for parallel jobs 381

job spanning 164, 170
job starters

augmentstarter 322
command-level 316
lic_starter script to manage software licenses 228
preservestarter 322
queue-level

configuring 320
description 316

specifying command or script 318, 320
user commands 320

job states
description 92
DONE

description 92
post-execution commands 311

EXIT
abnormal job termination 94
pre- and post-execution commands 311

PEND 92
POST_DONE 94, 311
POST_ERR 94, 311
post-execution 311
PSUSP 92
RUN 92
SSUSP 92
USUSP 92
WAIT for chunk jobs 271

job submission 34
JOB_ACCEPT_INTERVAL parameter in lsb.params 37
JOB_CONTROLS parameter in lsb.queues 336
JOB_SCHEDULING_INTERVAL parameter in lsb.params 37
JOB_SPOOL_DIR parameter in lsb.params 451
JOB_STARTER parameter in lsb.queues 320
JOB_TERMINATE_INTERVAL parameter in lsb.params 335
job-level

checkpointing 260
pre-execution commands

configuring 312
description 311

resource requirements 163
resource reservation 215
run limits 299

job-level suspending conditions, viewing 308
jobs

changing execution order 97
checkpointing

chunk jobs 272
manually 260
prerequisites 257

CHKPNT 336
Administering Platform LSF 509

510

Index
dispatch order 38
email notification

disabling 448
options 448

enabling rerun 249
enforcing memory usage limits 298
exclusive 151
forcing execution 99
interactive. See interactive jobs
killing 101
limiting processors for parallel 390
making checkpointable 259
migrating automatically 265
migrating manually 264
pending 93
periodic checkpointing 261
preemption 304
preemptive 154
PVM 377
requeueing 285
requeuing migrating 265
requeuing, description 248
rerunning 249
rerunning automatically 249
restarting

automatically 249
checkpointed jobs 263

resuming 100, 308
scheduling algorithm 308
sending specific signals to 102
short running 268
specifying options for interactive 354
specifying shell for interactive 356
spooling command and job files 355
spooling input, output, and command files 451
suspended 308
suspending 100, 304
suspending at queue level 307
switching queues 98
viewing

by user 96
configuration parameters in lsb.params 48
order in queue 38

jobs command in lstcsh 499
jobs requeue, description 244

K
Kerberos authentication 436
kernel-level checkpointing 253

L
lic_starter script, to manage software licenses 228
licenses

cluster reconfiguration 58
software

counted 224
dedicated queue for 226
floating 225
host locked 223
interactive jobs and 228
managing with LSF 222

LIM (Load Information Manager)

configuring number of restarts 137
configuring wait time 137
logging load information 137
preselecting master hosts 428
tuning 428

load indices 424
load thresholds 425
policies 423
run windows 423

lim.log.host_name file 464
limdebug command 483
limitations

lsrcp command 460
number of remote connections 438
on chunk job queues 270

limits
hard 294
resource 150
resource allocation 207

links to LSF machine-dependent directories 69
load average 121
load balancing 252
load indices

See also resources
built-in

overriding 138
summary 120

io 122
it 122
ls 121
mem 122
pg 121
r15m 121
r15s 121
r1m 121
swp 122
tmp 122
tuning for LIM 424
types 349
ut 121
viewing 48, 123

load levels
viewing by resource 115
viewing for cluster 48
viewing for hosts 63

load sharing
displaying current setting 500
with lstcsh 502

load thresholds
configuring 306
description 161
lsb.hosts file 426
paging rate, tuning 425
queue level 306
tuning 425
tuning for LIM 424, 425

local mode in lstcsh 492
locality of parallel jobs 385
lockU and lockW host status, status load index 121
lockU host status, lsload command 61
lockW host status
Administering Platform LSF

Index
lsload command 61
status load index 120

log files
default location 462
directory permissions and ownership 462
lim.log.host_name 464
logging events on Cray UNICOS 462
maintaining 464
managing 464
mbatchd.log.host_name 464
mbschd.log.host_name 464
pim.log.host_name 464
res.log.host_name 464
sbatchd.log.host_name 464

LOG_DAEMON facility, LSF error logging 464
login sessions 121
login shell, using lstcsh as 497
lost and found queue 89
ls load index 121
ls_connect API call 326
LS_EXEC_T environment variable 334
LS_JOBPID environment variable 332
ls_postevent() arguments 419
lsadmin command

limunlock 65
setuid permission 439

lsb.events file, managing event log 465
lsb.events file, event logging 43
lsb.hosts file

user groups 107
using host groups 79
using user groups 108

lsb.params file
CHUNK_JOB_DURATION parameter 269
controlling lsb.events file rewrites 465
JOB_ACCEPT_INTERVAL parameter 37
JOB_SCHEDULING_INTERVAL parameter 37
specifying job input files 451

lsb.queues file
adding a queue 89
restricting host use by queues 90
user groups 107
using host groups 79
using user groups 108

lsb.resources file 207
lsb.users file

user groups 107
using user groups 108

LSB_CONFDIR parameter in lsf.conf, default UNIX
directory 50

LSB_DEFAULTQUEUE environment variable 35
LSB_ECHKPNT_KEEP_OUTPUT environment variable 256
LSB_ECHKPNT_KEEP_OUTPUT in lsf.conf 256
LSB_ECHKPNT_METHOD environment variable 256
LSB_ECHKPNT_METHOD in lsf.conf 256
LSB_ECHKPNT_METHOD_DIR environment variable 254
LSB_ECHKPNT_METHOD_DIR in lsf.conf 254
LSB_HOSTS environment variable 374
LSB_JOBEXIT_STAT environment variable 312
LSB_JOBINDEX environment variable 280

LSB_JOBPEND environment variable 312
LSB_JOBPGIDS environment variable 337
LSB_JOBPIDS environment variable 337
LSB_LOCALDIR parameter in lsf.conf file 467
LSB_MAILSIZE environment variable 449
LSB_MAILSIZE_LIMIT parameter in lsf.conf 449
LSB_MAILTO parameter in lsf.conf 448
LSB_MBD_PORT parameter in lsf.conf 73
LSB_SBD_PORT parameter in lsf.conf 73
LSB_SHAREDIR parameter in lsf.conf

default UNIX directory 50
duplicate event logging 466

LSB_SHAREDIR/cluster_name/logdir, LSF log files 462
LSB_SIGSTOP parameter in lsf.conf 338
LSB_SUB_ABORT_VALUE environment variable 329
LSB_SUB_PARM_FILE environment variable 327
LSB_SUSP_REASON environment variable 337
.lsbatch directory 41
LSF Daemon Error Log 464
LSF events

generated by LSF 419
generation of 418
program arguments 419

LSF machine-dependent directories, symbolic links to 69
LSF parameters. See individual parameter names
LSF version, viewing 48
lsf.cluster.cluster_name file, configuring cluster

administrators 53
lsf.conf file

comprehensive system account 463
configuring daemon authentication 443
configuring duplicate logging 467
configuring TCP service ports 73
custom file transfer 460
daemon service ports 73
default UNIX directory 50
duplicate event logging 466
host authentication 442
limiting the size of job email 449
lsrcp executable 460
managing error logs 464
sending email to job submitter 448
setting message log to debug level 483
user authentication 438

lsf.shared file
adding a custom host type and model 72
tuning CPU factors 81

lsf.sudoers file, external authentication (eauth) 436, 437,
440

LSF_AUTH parameter in lsf.conf 438
LSF_AUTH_DAEMONS parameter in lsf.conf 443
LSF_BINDIR parameter in lsf.conf 50, 460
LSF_CONFDIR parameter in lsf.conf 50
LSF_EAUTH_AUX_DATA environment variable 436
LSF_EAUTH_CLIENT environment variable 443
LSF_EAUTH_KEY parameter in lsf.sudoers 436
LSF_EAUTH_SERVER environment variable 443
LSF_EAUTH_USER parameter in lsf.sudoers 437
LSF_ENABLE_CSA parameter in lsf.conf 463
Administering Platform LSF 511

512

Index
LSF_INCLUDEDIR parameter in lsf.conf, default UNIX
directory 50

LSF_JOB_STARTER environment variable 318
LSF_LIM_PORT parameter in lsf.conf 73
LSF_LOG_MASK parameter in lsf.conf 464, 483
LSF_LOGDIR parameter in lsf.conf 464
LSF_MANDIR parameter lsf.conf 50
LSF_MISC parameter in lsf.conf 50
LSF_NT2UNIX_CLTRB environment variable 339
LSF_NT2UNIX_CLTRC environment variable 339
LSF_RES_PORT parameter in lsf.conf 73
LSF_SERVERDIR directory, eauth executable 438
LSF_SERVERDIR parameter in lsf.conf 50
LSF_STARTUP_PATH parameter in lsf.sudoers 440
LSF_STARTUP_USERS parameter in lsf.sudoers 440
LSF_TOP directory

default UNIX directory structure 50
pre-42 UNIX directory structure 51

LSF_USE_HOSTEQUIV parameter in lsf.conf 442
.lsfhosts file 445
lsfinstall, adding a host 66, 67
lsfsetup

adding hosts to the cluster 68
setting up hosts 68

lsfshutdown command, shutting down daemons on all
hosts 54

lsfstartup command, starting daemons on all hosts 54
lshosts command, DEFAULT host model or type 474
LSLIB (Load Sharing LIBrary), initializing for privileged

ports authentication 438
lspasswd command 441
lsrcp command

description 458
file transfer 460
restrictions 460

lsrcp executable, file location 460
lstcsh

about 490
difference from other shells 494
exiting 496
limitations 495
local mode 492
remote mode 492
resource requirements 491
starting 496
task lists 491
using as login shell 497
writing shell scripts in 502

M
mail

disabling batch job notification 448
job options 448
limiting the size of job email 449

mandatory first execution host, parallel jobs 383
mapping user accounts 445
master host

in non-shared file systems 457
preselecting 428
specifying 467

viewing current 48
MAX_JOB_NUM parameter in lsb.params 465
maximum

number of processors for parallel jobs 382
resource usage limit 294
run limit 294

maxmem static resource 124
maxswp static resource 124
maxtmp static resource 124
mbatchd (master batch daemon)

expiry time 432
refresh time 432
restarting 56
shutting down 56
specifying query-dedicated port 432
specifying time interval for forking child 432
tuning on UNIX 432

mbatchd.log.host_name file 464
MBD. See mbatchd
mbddebug command 483
mbdrestart badmin command 54
mbschd.log.host_name file 464
mem load index 122
memory

available 122
usage limit 298

migration. See job migration
minimum processors for parallel jobs 382
model static resource 124
MPI (Message Passing Interface) 375, 378
MPICH support 378
mpijob parallel job script 378
MPL (Message Passing Library) 378
multi-homed hosts 76
multiple authentication environments 444
multiprocessor hosts

configuring queue-level load thresholds 307
tuning LIM 426

multithreading, configuring MBD for 432

N
name lookup using /etc/hosts file 75
name spaces, non-uniform 445
native language system, and lstcsh 495
ncpus static resource

dynamically changing processors 125
reported by LIM 124

ndisks static resource 124
network

failure 43
interfaces 76
partitioning, and duplicate event logging 467
port numbers, configuring for NIS or NIS+

databases 74
Network File System. See NFS
Network Information Service. See NIS
NFS (Network File System)

automount command 456, 470
nosuid option 440
Administering Platform LSF

Index
overview 456
NIS (Network Information Service)

configuring port numbers 74
host name lookup in LSF 75
ypcat hosts.byname 75

non-shared file systems, installing LSF 457
non-uniform name spaces 445
normalization

CPU time limit 302
host 302
run time limit 302

normalized run queue length
description 121
tuning LIM 426

nosuid option, NFS mounting 440
NQS (Network Queueing System), logging events on Cray

UNICOS 462
nqsacct file 462
number of processors for parallel jobs 382
numdone dependency condition 281
numended dependency condition 281
numerical resources 116
numexit dependency condition 281
numhold dependency condition 281
numpend dependency condition 281
numrun dependency condition 281
numstart dependency condition 281

O
official host name 75
-ok host status

lsload command 61
status load index 120

ok host status
bhosts command 60
lsload command 61
status load index 120

order of job execution,changing 97
order string 167
OS memory limit 299
output and input files, for job arrays 279
output file, spooling, default directory 452
output file spooling, default directory 452
ownership of log directory 462

P
P4 jobs 375, 377
p4job parallel job script 377
paging rate

automatic job suspension 305
checking 306
description 121, 349
load index 121
suspending conditions 306

parallel fairshare 401
parallel jobs

allocating processors 376
backfill scheduling 396
deadline constraint scheduling 402
fairshare 401

job slot limits 381
limiting processors 390
locality 170, 385
mandatory first execution host 383
mpijob script 378
number of processors 382
overview 373
processor reservation 393
spanning hosts 385
submitting 376
using makefile 389

parallel programming
Argonne National Laboratory 378
Mississippi State University 378
Oak Ridge National Laboratory 377
P4 377
packages 375
PVM 377

parallel tasks
running with lsgrun 362
starting 380

Parallel Virtual Machine (PVM)
job scripts 375
submitting jobs to LSF 377

parameters. See individual parameter names 48
partitioned networks 44
PATH environment variable

and lstcsh 496
shared user directories 42

paths
/etc/hosts file

example host entries 77
host naming 75
name lookup 75

/etc/hosts.equiv file 442
host authentication 442
using rcp 460

/etc/lsf.sudoers file 437
/etc/services file, adding LSF entries to 73
/net 458
/usr/bin/ 42

PEND, job state 92
pending reason, viewing 93
pending reasons, queue-level resource reservation 215
performance tuning

busy thresholds 424
LIM policies 423
load indices 424
load thresholds 425
mbatchd on UNIX 432
preselecting master hosts 428
run windows for LIM 423

periodic checkpointing
description 261
disabling 261
job-level 261
queue-level 262

periodic tasks 464
permissions

log directory 462
remote execution 442
Administering Platform LSF 513

514

Index
setuid
badmin command 439
lsadmin command 439

pg load index, suspending conditions 306
pidentd daemon 438
PIM (Process Information Manager), resource use 119
pim.log.host_name file 464
policies

fairshare 174
tuning for LIM 423

port
numbers, configuring for NIS or NIS+ databases 74
privileged, setuid authentication 438

ports
registering daemon services 73
specifying dedicated 432

post_done job dependency condition 237, 311
POST_DONE post-execution job state 94, 311
post_err job dependency condition 237, 311
POST_ERR post-execution job state 94, 311
post-execution

job dependency conditions 311
job states 311

post-execution commands
configuring 312
overview 310
queue-level 311
running under user ID 313

pre-4.2 UNIX directory structure 51
preemptable

jobs 154
queues 154

preemptive
jobs 154
queues 154
scheduling 154

preemptive scheduling, configuring 157
pre-execution commands

configuring 312
job-level 311
overview 310
queue-level 311
running under user ID 313

preservestarter job starter 322
priority user fairshare 198
priority. See dynamic user priority
privileged ports authentication (setuid)

description 438
limitations 438

process allocation for parallel jobs 164, 171
processor

number for parallel jobs 382
reservation 393

processor reservation, configuring 393
processors, limiting for parallel jobs 390
programs, handling LSF events 418
pseudo-terminal

submitting interactive jobs with 346
using to run a task 361

PSUSP job state

description 100
overview 92

pub/ident/server 438
PVM (Parallel Virtual Machine)

job scripts 375
submitting jobs to LSF 377

PVM jobs, submitting 377
pvmjob parallel job script 377

Q
qact badmin command 87
qclose badmin command 87
qinact badmin command 87
qopen badmin command 87
queue administrators, displaying 54
queue dispatch windows 232
queue priority 35
queue thresholds, viewing 39
QUEUE_NAME parameter in lsb.queues 89
queue-level

fairshare across queues 188
fairshare scheduling 187
job starter 320
making jobs checkpointable 259
migration threshold, configuring 265
periodic checkpointing 262
pre- and post-execution commands

configuring 312
description 311

resource limits 294
resource requirements 161
resource reservation 215
run limits 295

queue-level resource information, viewing 219
queue-level resource limits, defaults 294
queues

adding and removing 89
automatic selection 35
backfill queue 398
changing job order within 97
chunk job limitations 270
configuring

for chunk jobs 269
job control actions 336
suspending conditions 307

default 35
dispatch windows 87
displaying queue administrators 54
exclusive 151
fairshare across queues 188
interactive 344
lost and found 89
overview 34
preemptable 154
preemptive 154
REQUEUE_EXIT_VALUES parameter 312
restricting host use 90
run windows 88
setting rerun level 249
specifying suspending conditions 307
viewing
Administering Platform LSF

Index
available 85
default 35
detailed queue information 85
for interactive jobs 345
history 86
status 85

viewing administrator of 48

R
-R res_req command argument 164
r15m load index

built-in resources 121
description 350
suspending conditions 306

r15s load index
built-in resources 121
description 350
suspending conditions 306

r1m load index
built-in resources 121
description 350
suspending conditions 306

rcp command 458
remote connections, limitation to privileged ports

authentication 438
remote execution

authentication 435
permission 442
with lstcsh 493

remote jobs
bringing background jobs to foreground 499
execution priority 124

remote mode in lstcsh 492
requeued jobs 244
rerunnable jobs, chunk jobs 272
res.log.host_name file 464
resdebug command 483
resolv.conf file 75
resolver function 75
resource allocation limits, configuring 207
resource limits

default 294
specifying 294

resource names
aliases 165
description 130

resource requirements
and task lists in lstcsh 491
description 160
ordering hosts 164, 167
parallel job locality 164, 170
parallel job processes 164, 171
resource reservation 168
resource usage 164, 168
selecting hosts 164, 165

resource reservation
description 214
static shared resources 133

resource usage
resource requirements 164, 168
viewing 119

resource usage limits
ceiling 294
configuring 294
default 294
hard 294
maximum 294
soft 294

ResourceMap section in lsf.cluster.cluster_name 131
resources

See also load indices
adding 129
adding custom 130
associating with hosts 131
Boolean 116
built-in 120
configuring custom 130
configuring limits 207
custom 128
host-level 219
queue-level 219
shared 117, 118
types 116
viewing

available 48, 114
host load 115
shared 48

restrictions
chunk job queues 270
lsrcp command 460
lstcsh 495
number of remote connections 438

RESUME job control action 335
resume thresholds, viewing 308
RESUME_COND parameter in lsb.queues 335
reverse requeue 246
rexpri static resource 124
RFC 1413 and RFC 931 protocols, identification daemon

authentication 438
.rhosts file

troubleshooting 472
disadvantages 442
file transfer with lsrcp 460
host authentication 442

rlogin command
interactive terminals 349
privileged ports authentication 438

rsh command, privileged ports authentication 438
RUN job state, overview 92
run limits

ceiling 294
configuring 292, 299
default 295
maximum 294
specifying 301

run queue
effective 121
normalized 121
suspending conditions 306

run time
decayed 180
historical 180
Administering Platform LSF 515

516

Index
normalization 302
run windows

description 231
queues 88
tuning for LIM 423

RUN_WINDOW, queues 88
running jobs, viewing 92
rusage

resource requirements section 164
resource reservation 214
usage string syntax 168

ruserok function, authentication using
/etc/hosts.equiv 442

S
sample /etc/hosts file entries 77
sbatchd (slave batch daemon)

remote file access 458
restarting 55
shutting down 55

sbatchd.log.host_name file 464
sbddebug command 483
scheduling

exclusive 151
fairshare 174
hierarchical fairshare 192
preemptive 154
threshold

host selection 39
queue-level resource requirements 161

scheduling algorithm 308
scripts

check_license for counted software licenses 224
lic_starter to manage software licenses 228
mpijob 378
p4job 377
pvmjob 377
redirecting to standard input for interactive

jobs 355
writing for interactive jobs 354
writing in lstcsh 502

security
LSF authentication 439
user authentication 438

selection string 165
server hosts, viewing detailed information 62
server static resource 124
server status closed 62
service database examples 73
service ports (TCP and UDP), registering 73
setuid

authentication 438
permission

badmin command 439
lsadmin 439
privileged ports authentication 438

setuid permissions 472
share assignments 176
share tree 194
shared file systems, using LSF without 457

shared files 470
shared resources

description 117
static

reserving 133
update interval 134

viewing 118
shared user directories 41
shares

fairshare assignment 176
viewing user share information 105

shell mode, enabling 364
shell scripts. See scripts
shell variables and lstcsh 495
shells

default shell for interactive jobs 356
lstcsh 494
specifying for interactive jobs 356

short-running jobs, as chunk jobs 268
SIGCONT signal

default RESUME action 335
job control actions 102

SIGINT signal
conversion to Windows NT 339
default TERMINATE action 335
job control actions 102

SIGKILL signal
default TERMINATE action 335
job control actions 102
sending a signal to a job 102

signals
avoiding job action deadlock 338
configuring SIGSTOP 100, 334, 338
converting 339
customizing conversion 339
sending to a job 102
SIGINT 102
SIGTERM 102

SIGQUIT signal, conversion to Windows NT 339
SIGSTOP signal

bstop 100
configuring 100, 334, 338
default SUSPEND action 334
job control actions 102

SIGTERM signal
default TERMINATE action 335
job control actions 102

SIGTSTP signal
bstop 100
default SUSPEND action 334

soft resource limit
description 292
example 294

software licenses
counted 224
floating

dedicated queue for 226
description 225

host locked 223
interactive jobs competing with batch jobs 228
managing 228
Administering Platform LSF

Index
managing with LSF 222
spooling. See command file spooling, job file spooling
SSUSP job state

description 100
overview 92

stack segment size limit 300
standard input and output

for eauth 437
job arrays 279

standard output and error, redirecting to a file 365
started job dependency condition 238
static priority fairshare 199
static resources

See also individual resource names
description 124
shared

reserving 133
update interval 134

STATUS, bhosts 60
status

closed in bhosts 62
job arrays 282, 285
load index 120
viewing

hosts 62
queues 85

WAIT for chunk jobs 271
stderr, redirecting to a file 365
stdout, redirecting to a file 365
STOP_COND parameter in lsb.queues 334
string resources 116
submission options, embedding for interactive jobs 355
Sun Network Information Service/Yellow Pages. See NIS
supported file systems 456
SUSPEND job control action, default 334
suspend reason, viewing 308
suspended job states 93
suspended jobs, resuming 308
suspending conditions, viewing 307
suspending conditions, configuring 307
suspending reason, viewing 93
suspending thresholds 308
svc.conf file (name services) 75
swap space

load index 122
suspending conditions 306

swp load index
description 122
suspending conditions 306

symbolic links to LSF machine-dependent directories 69
syslog.h file 464

T
task control, with lstcsh 499
task lists

and lstcsh 491
changing memberships 491

tasks
file access 364

running in LSF Base 363
running on hosts listed in a file 362
running same on many hosts in sequence 361
selecting host to run on 360
starting parallel 380

TCP service port numbers
configuring for NIS or NIS+ databases 74
registering for LSF 73

tcsh, version and lstcsh 495
temp space, suspending conditions 306
TERMINATE job control action 335
TERMINATE_WHEN parameter in lsb.queues 338
TerminateProcess() system call (Windows NT), job control

actions 335
thresholds

host and queue 39
scheduling and suspending 308
tuning for LIM 425

time expressions, creating for automatic
configuration 146

time normalization, CPU factors 302
time values, specifying 144
time windows, syntax 145
time-based, resource limits 150
/tmp directory, default LSF_LOGDIR 464
tmp load index

description 122
suspending conditions 306

/tmp_mnt directory 470
type static resource 63, 124

U
UDP service port numbers, registering for LSF 73
uid argument to eauth 437
unavail host status

bhosts command 60
lsload command 61
status load index, status load index 121

UNICOS accounting 462
UNIX directory structure

example 50
pre-42 51

unlicensed host status
bhosts command 60
lsload command 61
status load index 121

unreach host status, bhosts command 60
update interval, static shared resources 134
usage limits. See resource usage limits
user account mapping 445
user authentication

environments 436
external (eauth) 436
identification daemon (identd) 438
LSF_AUTH parameter in lsf.conf 438
LSF_EAUTH_KEY parameter in lsf.sudoers 436
LSF_EAUTH_USER parameter in lsf.sudoers 437
LSF_STARTUP_PATH parameter in lsf.sudoers 440
LSF_STARTUP_USERS parameter in lsf.sudoers 440
overview 435
Administering Platform LSF 517

518

Index
privileged ports (setuid) 438
RFC 1413 and RFC 931 438
security 439

user groups
defining external user groups 109
overview 106
specifying 195
viewing information about 104

user home directories, shared 41
user priority 178
user share assignments 176
user_auth_data argument to eauth 437
user_auth_data_len argument to eauth 437
USER_NAME parameter in lsb.users 108
USER_SHARES parameter in lsb.hosts 108
user-level

account mapping, configuring 445
checkpointing, overview 253

username argument to eauth 437
users

viewing information about 104
viewing jobs submitted by 96
viewing shares 105

USERS parameter in lsb.queues 108
user-specified job requeue 248
/usr/include/sys/syslog.h file 464
%USRCMD string in job starters 320
USUSP job state

description 100
overview 92
suspending and resuming jobs 100

ut load index
built-in resource 121
description 350

utmp file registration on IRIX, enabling 357

V
variables. See individual environment variable names
viewing

configuration errors 58
host status 62

virtual memory
load index 122
suspending conditions 306

vmstat 122

W
WAIT status of chunk jobs

description 271
viewing 94

Windows, job control actions 335
windows

dispatch 232
run 231
time 145

Windows NT
authentication in LSF Service 440
default directory structure 52
TerminateProcess() system call, job control

actions 335
Windows NT Event Viewer 418
workarounds to lsrcp limitations 460

X
X applications, running with bsub 353
xterm, starting in LSF Base 367

Y
ypbind daemon 75
ypcat hosts.byname 75
ypmake command 74
Administering Platform LSF

	Welcome
	About This Guide
	Learning About Platform LSF
	Technical Support
	About Platform LSF
	Cluster Concepts
	Job Life Cycle

	How the System Works
	Job Submission
	Job Scheduling and Dispatch
	Host Selection
	Job Execution Environment
	Fault Tolerance

	Managing Your Cluster
	Working with Your Cluster
	Viewing Cluster Information
	Default Directory Structures
	Cluster Administrators
	Controlling Daemons
	Controlling mbatchd
	Reconfiguring Your Cluster

	Working with Hosts
	Host States
	Viewing Host Information
	Controlling Hosts
	Adding a Host
	Removing a Host
	Adding Host Types and Host Models to lsf.shared
	Registering Service Ports
	Host Naming
	Hosts with Multiple Addresses
	Host Groups
	Tuning CPU Factors

	Working with Queues
	Queue States
	Viewing Queue Information
	Controlling Queues
	Adding and Removing Queues
	Managing Queues

	Managing Jobs
	Job States
	Viewing Job Information
	Changing Job Order Within Queues
	Switching Jobs from One Queue to Another
	Forcing Job Execution
	Suspending and Resuming Jobs
	Killing Jobs
	Sending a Signal to a Job

	Managing Users and User Groups
	Viewing User and User Group Information
	About User Groups
	Existing User Groups as LSF User Groups
	LSF User Groups

	Working with Resources
	Understanding Resources
	About LSF Resources
	How Resources are Classified
	How LSF Uses Resources
	Load Indices
	Static Resources
	Automatic Detection of Hardware Reconfiguration

	Adding Resources
	About Configured Resources
	Adding New Resources to Your Cluster
	Configuring lsf.shared Resource Section
	Configuring lsf.cluster.cluster_name ResourceMap Section
	Static Shared Resource Reservation
	External Load Indices and ELIM
	Modifying a Built-In Load Index

	Scheduling Policies
	Time Syntax and Configuration
	Specifying Time Values
	Specifying Time Windows
	Specifying Time Expressions
	Automatic Time-based Configuration

	Deadline Constraint and Exclusive Scheduling
	Deadline Constraint Scheduling
	Exclusive Scheduling

	Preemptive Scheduling
	About Preemptive Scheduling
	How Preemptive Scheduling Works
	Configuring Preemptive Scheduling

	Specifying Resource Requirements
	About Resource Requirements
	Queue-Level Resource Requirements
	Job-Level Resource Requirements
	About Resource Requirement Strings
	Selection String
	Order String
	Usage String
	Span String
	Same String

	Fairshare Scheduling
	About Fairshare Scheduling
	User Share Assignments
	Dynamic User Priority
	Using Historical and Committed Run Time
	How Fairshare Affects Job Dispatch Order
	Host Partition Fairshare
	Queue-Level Fairshare
	Cross-queue Fairshare
	Hierarchical Fairshare
	Users Affected by Multiple Fairshare Policies
	Ways to Configure Fairshare

	Job Scheduling and Dispatch
	Resource Allocation Limits
	About Resource Allocation Limits
	Configuring Resource Allocation Limits

	Reserving Resources
	About Resource Reservation
	Using Resource Reservation
	Memory Reservation for Pending Jobs
	Viewing Resource Reservation Information

	Managing Software Licenses with LSF
	Using Licensed Software with LSF
	Host Locked Licenses
	Counted Host Locked Licenses
	Network Floating Licenses

	Dispatch and Run Windows
	Dispatch and Run Windows
	Run Windows
	Dispatch Windows

	Job Dependencies
	Job Dependency Scheduling
	Dependency Conditions

	Job Priorities
	User-Assigned Job Priority
	Automatic Job Priority Escalation

	Job Requeue and Job Rerun
	About Job Requeue
	Automatic Job Requeue
	Reverse Requeue
	Exclusive Job Requeue
	User-Specified Job Requeue
	Automatic Job Rerun

	Job Checkpoint, Restart, and Migration
	Checkpointing Jobs
	Approaches to Checkpointing
	Creating Custom echkpnt and erestart for Application-level Checkpointing
	Checkpointing a Job
	The Checkpoint Directory
	Making Jobs Checkpointable
	Manually Checkpointing Jobs
	Enabling Periodic Checkpointing
	Automatically Checkpointing Jobs
	Restarting Checkpointed Jobs
	Migrating Jobs

	Chunk Job Dispatch
	About Job Chunking
	Configuring a Chunk Job Dispatch
	Submitting and Controlling Chunk Jobs

	Job Arrays
	Creating a Job Array
	Handling Input and Output Files
	Redirecting Standard Input and Output
	Passing Arguments on the Command Line
	Job Array Dependencies
	Monitoring Job Arrays
	Controlling Job Arrays
	Requeuing a Job Array
	Job Array Job Slot Limit

	Controlling Job Execution
	Runtime Resource Usage Limits
	About Resource Usage Limits
	Specifying Resource Usage Limits
	Supported Resource Usage Limits and Syntax
	CPU Time and Run Time Normalization

	Load Thresholds
	Automatic Job Suspension
	Suspending Conditions

	Pre-Execution and Post-Execution Commands
	About Pre-Execution and Post-Execution Commands
	Configuring Pre- and Post-Execution Commands

	Job Starters
	About Job Starters
	Command-Level Job Starters
	Queue-Level Job Starters
	Controlling Execution Environment Using Job Starters

	External Job Submission and Execution Controls
	Understanding External Executables
	Using esub
	Working with eexec

	Configuring Job Controls
	Default Job Control Actions
	Configuring Job Control Actions
	Customizing Cross-Platform Signal Conversion

	Interactive Jobs
	Interactive Jobs with bsub
	About Interactive Jobs
	Submitting Interactive Jobs
	Performance Tuning for Interactive Batch Jobs
	Interactive Batch Job Messaging
	Running X Applications with bsub
	Writing Job Scripts
	Registering utmp File Entries for Interactive Batch Jobs

	Running Interactive and Remote Tasks
	Running Remote Tasks
	Interactive Tasks
	Load Sharing Interactive Sessions
	Load Sharing X Applications

	Running Parallel Jobs
	Running Parallel Jobs
	How LSF Runs Parallel Jobs
	Preparing Your Environment to Submit Parallel Jobs to LSF
	Submitting Parallel Jobs
	Submitting PVM Jobs to LSF
	Submitting MPI Jobs
	Starting Parallel Tasks with LSF Utilities
	Job Slot Limits For Parallel Jobs
	Specifying a Minimum and Maximum Number of Processors
	Specifying a Mandatory First Execution Host
	Controlling Processor Allocation Across Hosts
	Running Parallel Processes on Homogeneous Hosts
	Using LSF Make to Run Parallel Jobs
	Limiting the Number of Processors Allocated
	Reserving Processors
	Reserving Memory for Pending Parallel Jobs
	Allowing Jobs to Use Reserved Job Slots
	Parallel Fairshare
	How Deadline Constraint Scheduling Works For Parallel Jobs

	Advance Reservation
	About Advance Reservation
	Configuring Advance Reservation
	Using Advance Reservation

	Monitoring Your Cluster
	Event Generation
	Event Generation

	Tuning the Cluster
	Tuning LIM
	Adjusting LIM Parameters
	Load Thresholds
	Changing Default LIM Behavior to Improve Performance
	Tuning mbatchd on UNIX

	Authentication
	About User Authentication
	About Host Authentication
	About Daemon Authentication
	LSF in Multiple Authentication Environments
	User Account Mapping

	Job Email, and Job File Spooling
	Mail Notification When a Job Starts
	File Spooling for Job Input, Output, and Command Files

	Non-Shared File Systems
	About Directories and Files
	Using LSF with Non-Shared File Systems
	Remote File Access
	File Transfer Mechanism (lsrcp)

	Error and Event Logging
	System Directories and Log Files
	Managing Error Logs
	System Event Log
	Duplicate Logging of Event Logs

	Troubleshooting and Error Messages
	Shared File Access
	Common LSF Problems
	Error Messages
	Setting Daemon Message Log to Debug Level
	Setting Daemon Timing Levels

	LSF Utilities
	Using lstcsh
	About lstcsh
	Task Lists
	Local and Remote Modes
	Automatic Remote Execution
	Differences from Other Shells
	Limitations
	Starting lstcsh
	Using lstcsh as Your Login Shell
	Host Redirection
	Task Control
	Built-in Commands
	Writing Shell Scripts in lstcsh

	Index

